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Abstract

This thesis deals with a design of a versatile cryptographic coprocessor for Elliptic Curve
Cryptography dedicated for cryptographic operations over binary finite field, GF (2m). The
processor can work with (almost) any binary finite field of order (cardinality, number of
elements) between 22 and 21000, can operate over either affine or projective coordinates
and can use either polynomial basis or normal basis represenatation of field elements. The
change of coordinate system is realized by a replacement of a controllers microprogram.
The change of basis is done by replacement of appropriate arithmetic units and a minor
change in a microprogram.

We use a Combo6X card as an implementation platform. We compare various processor
configurations in area, frequency and clock cycles spent on the basic operation, scalar
multiplication of a point on a curve. We also evaluate total time per single multiplication
to determine whether PCI bus latencies prevent us from using Combo6X as a dedicated
accelerator.

Abstrakt

Tato práce se zabývá vývojem univerzálního kryptografického koprocesoru pro kryptografii
eliptických křivek, určeného pro kryptografické operace nad binarním konečným tělesem
GF (2m). Procesor umí pracovat se (skoro) libovolným konečným tělesem (mohutnost,
počet prvků) mezi 22 a 21000, umí operovat s jak afiními tak projektivními souřadnicemi a
umí používat jak polynomiální tak normální bázi k reprezentaci prvků konečného tělesa.
Změna souřadného systému je realizována změnou mikroprogramu řadiče. Změna báze je
prováděna výměnou příslušných aritmetických jednotek a drobnými změnami mikropro-
gramu.

Jako implementační platformu používáme kartu Combo6X. Porovnáváme jednotlivé
konfigurace procesoru v ploše, frekvenci a počtu hodinových cyklů, které zabere základní
operace, skalární násobek bodu na křivce. Dále vyhodnocujeme celkévý čas spotřebo-
vaný na jedno násobení, abychom určili zda-li nám latence PCI sběrnice brání v použití
Combo6X jako dedikovaného akcelerátoru.
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CHAPTER 1. INTRODUCTION 1

1 Introduction

The requirement to keep messages secret is almost as old as messages themselves. And
where messengers could not be trusted to deliver the messages safely, means had to be
devised to prevent unauthorized persons from reading the message contents. Thus ciphers
and cryptography have been born.

Modern cryptography uses mathematics and computers for message encryption and de-
cryption. It divides ciphers into two main categories:

• Symmetric ciphers

• Asymmetric ciphers

Symmetric ciphers, typical example is AES1, use the same key for encryption and de-
cryption. These ciphers have fast encryption and decryption, are very strong and therefore
perfectly suitable for transferring messages between two people. However, they still have
the main problem of all ciphers used throughout the centuries. If we have an unbreakable
cipher, how do we tell our desired recipient how to decipher it, without the risk of telling
the same thing to others?

This problem is answered by the second category of ciphers, asymmetric ciphers. Those
have two different keys, one for encryption and the other for decryption. Two typical
usages are:

• Release the encryption key as public key and keep the decryption key as private key.
This way anyone can send us a message, for example key for a symmetric cipher, and
nobody else can read the messages.

• Release the decryption key and keep the encryption key. This way we can encrypt
hash of our message and everyone can check, by decrypting it, that it indeed does
match the message. However, nobody can forge our message and generate a new en-
crypted hash that would be correctly decrypted by the decryption key. This method
is known as digital signature (DSA).

For this versatility of asymmetric ciphers we pay with considerably longer computation
times when using the ciphers, so they are not really suitable for general data transfers.
We therefore mainly use them for the aforementioned key exchange and digital signature
tasks.

Probably the best known asymmetric cipher is RSA, which is based on integer factoriza-
tion problem. This problem states, that given a product of two prime numbers, it is very
hard to deduce the two original prime numbers. This problem might seem to be fairly easy
at first, but using large numbers has proven to be very hard. The longest key deciphered
in the RSA Factoring Challenge was RSA-200 (200 decimal, 663 binary digits) and it took
the solvers equivalent of 55 years of a single 2.2 GHz Opteron computer time [9]. Current
standard RSA key length is typically 1024 bits and the required time to decipher roughly
doubles with every binary digit we add.

1Advanced Encryption Standard



2 CHAPTER 1. INTRODUCTION

Elliptic Curves can also be used to build asymmetric ciphers. This relatively new field of
cryptography, called Elliptic Curve Cryptography (ECC), is based on Elliptic Curve Dis-
crete Logarithm Problem (ECDLP). The basic operation here is not integer multiplication
and factorization, but scalar multiplication of a point on an elliptic curve. This cipher has,
for the same given cryptographic strength, much shorter key sizes. According to [14], ECC
key size 160b is equivalent to RSA key size 1024b.

Asymmetric ciphers are used not only on desktop computers, but also in RFID2 chips,
credit cards, mobile phones etc. There the 1024b RSA key length requires considerable
amount of memory and registers, which are not always readily available. On the other hand,
ECC requires less than sixth of that for the same strength of the cipher. We are therefore
presented with an opportunity to use ECC to build smaller cryptographic hardware while
retaining the high security of 1024b RSA.

The goal of this thesis was to design and implement a special cryptographic coprocessor
for Elliptic Curve Cryptography that would allow easy comparisons of several ECC vari-
ants. We also aimed to implement this coprocessor on Combo6X PCI board and evaluate
its function as an accelerator for desktop computers.

In Chapter 2 we will provide a brief introduction into the mathematics underlying ECC
and give and, based on that, give a more detailed specification of our goals. In Chapter
3 we will describe the Combo6X card, provide basic design decisions and compare with
previous work [2]. In Chapter 4 we provide detailed description of our implementation and
various decisions in the process. Chapter 5 describes required support tools, in Chapter
6 we describe our tests and provide results and measurements. In Chapter 7 we conclude
and suggest future work on the topic.

2Radio-frequency identification
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2 Elliptic Curve Cryptography basics

In this chapter we will first describe several definitions and principles about elliptic curves
in general. We will then focus on their representation that is used in asymmetric cryp-
tography, explain the basic operations and determine what requirements it puts on our
coprocessor. Content of this chapter is based mostly on [2], [4], [15] and [13].

2.1 Basic elliptic curve mathematics

Elliptic curve E over the real number set is a set of points that fulfill the Weierstrass
equation:

y2 = x3 + ax+ b (2.1)

where x and y are real numbers representing a point on the curve, a and b are real numbers,
defining parameters of the curve.

If the x3 + ax+ b term cannot be decomposed, i.e. condition 4a3 + 27b2 6= 0 is satisfied,
the elliptic curve E will form a group.

The group consists of points satisfying the Weierstrass equation and of an additional
element called the point at infinity (denoted O). The points other than O are called finite
points. The number of points on E (including O) is called the order of E.

The basic operation on the points of an elliptic curve is addition. This operation can
be described geometrically as follows. First we define inverse of a point P = (x, y) to be
P = (x,−y), i.e. the point is mirrored by the x axis. Then the sum of P + Q is the point
R with the property that P, Q and −R lie on a common line (Figure 2.1).

Figure 2.1: Sum of two different points on an elliptic curve, source [2]
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The point at infinity O plays a role analogous to the number 0 in ordinary addition.
Thus:

P +O = P (2.2)
P + (−P ) = O

for all points P.

The last possibility not shown is adding a point to itself. This is similar to sum of two
different points, only the common line contains only points P, −R and no other point of
the curve. Therefore, the line has to be tangent to the curve.

2.2 Mathematics for Elliptic Curve Cryptography

So far we have described the elliptic curves in their general, geometric representation.
However, using this representation on computers requires floating numbers and introduces
rounding error. Cryptography requires the computations to be both fast and precise. The
standard [4] therefore defines elliptic curves for cryptography over finite fields.

First of the finite fields is GF (p), where p is a prime number. Here the elements are
integers from range [0, p) and all arithmetic is done modulo p. Elliptic curve over GF (p)
is defined as:

y2 ≡ x3 + ax+ b (mod p) (2.3)

The second option isGF (2m), wherem is the key length. Elements of this field are binary
numbers with m-bit length, which is perfectly suitable to fully use our m-bit registers. We
use this second representation and we use m to denote a variable defining the key length
throughout this document. Elliptic curves over GF (2m) are defined by equation:

y2 + xy = x3 + ax+ b (2.4)

Unlike the prime field case, there are many common representations for binary finite
fields. We focus our attention only on the following two representations:

• Polynomial basis – The finite field is generated by an appropriate irreducible field
polynomial of degree m. Each element is then represented as
αm−1x

m−1 + αm−2x
m−2 + . . .+ α1x+ α01

• Normal basis – Gaussian normal basis used in our coprocessor requires m mod 8 6= 0
. When this is satisfied, normal basis can be used and each element is represented as
αm−1x

2m−1
+ αm−2x

2m−2
+ . . .+ α1x

2 + α0x

The last thing we need to define to have the complete set of operations required for
Elliptic Curve Cryptography is scalar multiplication of a point. The definition is:

Q = k · P = P + P + · · ·+ P︸ ︷︷ ︸
k

(2.5)

where k is a natural number. While its length is not specified, for convenience it is usually
of the same bit length as the finite field elements.
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2.3 Elliptic curves in cryptography

Now we can describe how elliptic curves are used in cryptography. As was stated before,
the ECC is based on Elliptic Curve Discrete Logarithm Problem. It can be described as
follows (quoted from [18]):

“Let E be an elliptic curve defined over a finite field F and give a pair of point [P, m ·P ]
where P is a point of order n. The ECDLP is to find the integer m where 0 ≤ m ≤ n− 1.”

We will now give an example of how this can be used by Alice and Bob to agree upon
a common key for a symmetric cipher. This example is, with slight modifications, taken
from [2].

“Let us assume we have a publicly defined elliptic curve E and a point P on this curve.
If Alice wants to send a message to Bob, she will do the following. She will send Bob her
public key. This key is a point A, from equation A = a · P , where the integer a is her
private key.

Bob will in return send her his public key, point B, computed in a similar fashion from
B = b · P , where the integer b is Bob’s private key.

Alice, upon receiving the point B, can compute point S = a · B and use it as a key for
a symmetric cipher. Bob will compute the same point S as S = b · A because, after a
substitution, both equations give us S = a · b · P .”
We therefore see that if our coprocessor computes a scalar multiplication of a point on

an elliptic curve, it is sufficient to directly offer some basic cryptographic functionality
without any additional algorithms.

2.4 Impact on hardware design

We have concluded that it will be sufficient if our coprocessor implements only the basic
operation of ECC, the scalar multiplication of a point (Q = k ·P ) on an elliptic curve. We
will apply the add-and-double algorithm to compute this multiplication, because adding
P k -times would be extremely costly and de facto equivalent to computing the k from P
and Q.

Q = O
While i in 0 to m-1

Q = 2*Q
if ki = 1 then

Q = Q+P

Figure 2.2: Add-and-double algorithm for scalar multiplication

The add-and-double algorithm (Horner scheme) is depicted on Figure 2.2. The scalar k
is used in its binary representation and ki denotes the ith binary digit with i between 0
and m− 1. We see that to implement the scalar multiplication we need only general point
addition or, more specifically, point doubling and general point addition.

Before we introduce algorithms used for point addition we have to introduce an alterna-
tive representation of points on elliptic curve. There are two coordinate systems:

• Affine coordinates – Coordinates we have considered so far, each point represented
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Figure 2.3: Algorithm for point addition in affine coordinates, taken from [4]

by two field elements (x, y).

• Projective coordinates – This coordinate system uses three elements to represent
a point (x, y, z). The conversion from affine to projective coordinates is (x, y) ⇒
(x, y, 1). The conversion from projective to affine is (x, y, z) ⇒

(
x
z2
, y
z3

)
. From this

it is obvious, that each point has several representations in the projective coordinate
system. Point at infinity is represented by coordinates (1, 1, 0).

2.4.1 Affine coordinates

Algorithm in Figure 2.3 describes addition algorithm for points in affine coordinates. Ig-
noring the special cases when we are adding a point at infinity or the result is point at
infinity, we can see two distinct paths through the algorithm.

When the two points are different we go through steps 3-3.3, 7 and 8. When the two
points are equal, i.e. when doubling, we go through steps 6-8. In both paths we can see
that the operations on field elements are: comparison, addition, squaring, multiplication
and division.

2.4.2 Projective coordinates

Lets now consider projective coordinate algorithms for point addition and point doubling
(Figure 2.4, Figure 2.5). We immediately notice there are two distinct algorithms, one for
point doubling and the other for arbitrary point addition. It should be noted that when
the point addition algorithm returns (0, 0, 0) in step 14, it is a signal that point doubling
should be used instead. We also notice that, unlike with affine coordinates, there is no
division in the algorithms.

On the other hand, we need many more temporary variables (up to nine, compared
to one needed in affine coordinates algorithm) and a lot of multiplications. Using these
algorithms, we first convert P to projective coordinates, do the scalar multiplication and
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Figure 2.4: Algorithm for point doubling in projective coordinates, taken from [4]

at the end convert back to affine coordinates. We can see that in the point addition, we
always add the unmodified point P, i.e. point with (x, y, 1) coordinates. Therefore we can
safely ignore steps 7 and 21, because the point P will never have z 6= 1. The last thing
we notice is a parameter c in step 4 of the doubling algorithm. We compute c = b2

m−2 ,
therefore b = c4 .

To conclude, we need:

• Several m-bit registers for temporary variables

• Field element addition

• Field element squaring – can be implemented by multiplication or a special circuit

• Field element division (or inversion)

• Field element multiplication

Our ultimate goal is to have a coprocessor that can be used to evaluate various approaches
to elliptic curve cryptography. To implement different algorithms (affine and projective
coordinates) we will use micro-programmable controller. We also want all the units to be
either universal, or easily interchangeable.

Addition is very simple and for both bases it is a bitwise XOR. Squaring could be per-
formed in a multiplication unit, but in both bases there is a simple, purely combinational,
circuit that performs the same operation. These circuits are however different for polyno-
mial and normal basis, so this unit has to be interchangeable. Multiplication is also specific
to each base. Division is also very different. In polynomial basis, we can use Extended
Euclidean Algorithm (EEA) to directly divide two field polynomials. In normal basis, we
have to use an Itoh-Teechai-Tsujii inversion algorithm described in [17] and [4]. This is
however significantly more expensive than the EEA division, so projective coordinates with
their two divisions (used only to transform from projective to affine coordinates) per scalar
multiplication are of a great interest when considering normal basis.
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Figure 2.5: Algorithm for point addition in projective coordinates, taken from [4]

2.5 Goals

We have introduced two representations of an element in GF (2m), the normal and poly-
nomial bases. We also introduced two different representations of a point on an elliptic
curve, affine and projective coordinates.

The main goal of our project is to allow coprocessor reconfiguration in as contained
manner as possible. The ideal state we strive to achieve is to have:

• A single boolean generic that will switch between polynomial and normal basis.

• A single integer variable that will allow setting key length in a reasonable range of
2-1000 bits

We want to limit usage of external tools as much as possible, having all required informa-
tion generated by the synthesis process or, where not possible, pre-generated for the given
range (e.g., irreducible field polynomials). The one obvious exception in this effort is com-
pilation of code for the microcontroller. We choose Java as the ideal platform-independent
programming language for this task.
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3 Implementation platform

In this chapter we first describe our chosen implementation platform Combo6X and options
it can provide us.

Combo6X is a PCI card with a VirtexII Pro FPGA1 chip on it. It has been designed for
the Liberouter project [16]. In its typical usage in networking applications, the Combo6X
card is accompanied by a so-called interface card (Figure 3.1, Figure 3.2).

Figure 3.1: Combo6X, source [16] Figure 3.2: Interface card Combo-4SFP,
source [16]

The Combo6X card provides communication with the rest of PC over PCI-X (66MHz/64b
standard, backwards compatible with PCI 33MHz/32b we use) through a PCI bridge
implemented in a dedicated FPGA with a special firmware. It also provides high computing
power (VirtexII Pro FPGA), DDR and CAM memories and connection to interface cards.

There are several types of interface cards. They typically contain another Virtex-family
FPGA, memories and physical network interface for either optical or metallic network
cables. We do not use any such card for our project, but should we decide to use our
design for automatic key exchange, then the interface cards would be used.

Our project requires only the base Combo6X card and on it only the two FPGAs, the
PCI bridge and VirtexII Pro. The PCI bridge contains a “factory” firmware, is dedicated
only to communication with the bus and we shall not discuss it further. We will implement
our design in the main FPGA. This FPGA can be easily configured via supplied Linux
tools. Neither this FPGA nor the board itself contains non-volatile memory to store the
FPGA configuration, which means it is necessary to load our design after each restart of
the host PC. However this apparent disadvantage proves to be a huge advantage once we
load a design that violates timing on the PCI bus and freezes the whole system. It is then
sufficient to simply reboot and all it back to normal, with no need to dismantle the PC
and reprogram the Combo6X board externally.

As was said before, we use only PCI interface and will now briefly describe the mecha-
nisms for connecting designs (modules) in VirtexII Pro to PCI bus.

3.1 Local bus

Communication between PCI bridge and VirtexII Pro FPGA is provided by PLX proto-
col. However, this protocol is not very user-friendly and therefore the basic package of
the Liberouter project offers a LocalBus component that provides a much more friendly

1Field-programmable Gate Array
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interface. This bus allows us to connect each design module to PCI via a protocol very
similar to a protocol used for communication with BlockRAMs. The basic structure of this
communication hierarchy is apparent from Figure 3.3.

Figure 3.3: Structure of communication hierarchy in Combo6X test design

The LOCAL_BUS component negotiates communication between the PCI bridge and
other LocalBus components. There are also LocalBus components that provide communi-
cation with interface cards, but we do not use these in our design and thus they are not
depicted on Figure 3.3.

We are mostly interested in the LBCONN_MEM component which we will now briefly
introduce. The component is on one side connected to LOCAL_BUS component and on
the other provides the final module the generics and signals in Tables 3.1 and 3.2.

Table 3.1: LBCONN_MEM component connections - Generics
Name Usage
BASE The base address in the address space of the card. This

address is byte oriented.
ADDR_WIDTH Width of address bus in the user interface. This address

is not in bytes but in 16b words.
USE_HIGH_LOGIC False if the architecture supports tri-state buses, true oth-

erwise.
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Table 3.2: LBCONN_MEM component connections - Signals
Name IO Usage
DATA_OUT OUT 16b data from PCI. Similar to data written to memory.
DATA_IN IN 16b data to PCI. Similar to data from memory.
ADDR OUT Address bus of ADDR_WIDTH width. This address

is not byte oriented, it is in 16b words.
RW OUT Determines whether the transaction is Write (1) or

Read (0). It is therefore a Write/Read_N signal.
EN OUT Enable signal, active (1) when address is.
SEL OUT Select signal, active (1) for the whole duration of the

transaction.
DRDY IN Data ready, when reading from module, it is active (1)

when data are valid.
ARDY IN Address ready. Not implemented in the current ver-

sion.

Here we focus on signals EN, SEL and DRDY. If we write into the module, then SEL
and EN are equal. However, if we read from the module, then EN is active while there is
a valid data request on address bus, SEL is active until the last data have been read from
the module. DRDY determines whether the data on DATA_IN port are valid. The whole
protocol is on Figure 3.4.

Figure 3.4: Signals during write and read operations, taken from [16]
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Each 32b (dword) transaction over the PCI bus initiates two 16b (word) transactions on
LocalBus, where the lower word is on an even address and the higher word is on an odd
address.

For example, if our module has a base address BASE=0x3000, then writing 0x0123_4567
to address 0x3010 over PCI will initiate first transfer of 0x4567 to address 0x20 and then
transfer of 0x0123 to address 0x21.

Regs_P : process(LBCLK, RESET)
variable addrReg : integer;
begin

if RESET = ’1’ then
into_LB <= (others=>’0’);
DRDY <= ’0’;

elsif rising_edge(LBCLK) then
addrReg := conv_integer(ADDR);
if RW = ’1’ and EN = ’1’ then

if ADDR(0) = ’1’ then
regs(addrReg) <= from_LB xor X"FFFF";

else
regs(addrReg) <= from_LB;

end if;
end if;
into_LB <= regs(addrReg);
-- data are valid all the time
-- (ie. whenever I am asked for it)

DRDY <= EN and not RW;
end if;

end process Regs_P;

Figure 3.5: Code of memory connected to LBCONN_MEM inverting top 16b of each
written 32b word

Code snippet on Figure 3.5 shows a memory connected to LBCONN_MEM that always
inverts top 16b of each written 32b word. Memory is represented by an array of 16b word
regs. Signals into_LB and from_LB are connected to DATA_IN and DATA_OUT ports
respectively.
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4 Analysis

In this chapter we will describe the top level design, connecting the coprocessor with the
outside world. Then we will the coprocessor itself, compare with the previous work and
determine requirements on each part. The implementation details will be given in Chapter
5.

4.1 Top level design

Our coprocessor consists of two basic parts, a programmable microcontroller and data part
with the functional units. For communication with the outside world we therefore need
three basic types of communication:

• Status information – typically single 32b word containing information about status
and settings of the coprocessor. Base addresses of data parts, ready/start commands,
key-length, polynomial vs. normal basis etc.

• m-bit vectors – Data for the coprocessor to operate on, e.g. points to multiply, k to
multiply with, curve parameters and so on.

• Microprogram – program, a set of 32b words, for the microcontroller.

We have decided to split this communication into two distinct address spaces. The first
address space is dedicated for operating the coprocessor, i.e. the status information and
vector transfer. The second address space is then used for reprogramming the coprocessor.

Reasoning is that while we need the status information and vector transfers for each
operation, we typically do not want to change the programming very often. It is therefore
useful to have this in a separate address space that can be, for example, locked from normal
users.

ECDSA_top

LOCAL_BUS

FPGA_top

uControl

Adder_data

ECDSA_wrapper

LB
C

O
N

N
_M

E
M

PCI

Figure 4.1: Top level design of coprocessor in Combo6X
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On Figure 4.1 we see the basic scheme of the design. The FPGA_top entity is the
very top level design, containing all components required for the design work on Combo6X
card. Besides the modules depicted here, the design also contains several other modules,
mainly design version identification and module used to test whether the device has been
configured correctly. These have no impact whatsoever on our coprocessor and shall not be
discussed here. We just note that the area of these extra modules has not been considered
for coprocessor area evaluation.

Let us now focus on entity named ECDSA_wrapper. This entity contains the coprocessor
itself, the microcontroller and the data paths. As the coprocessor core is designed to run
on a frequency independent of the communication frequency, this entity also contains
registers for demetastabilizing control signals when these cross between clock domains.
These registers are not shown on Figure 4.1. This ECDSA_wrapper is what we will call
the coprocessor, as it is virtually independent unit that could be easily plugged into any
design, not just the Combo6X architecture.

ECDSA_top entity provides interface between the top level design and coprocessor. It
has two main functions:

• Provide LBCONN_MEM for each base address

• Convert 16b transfers on LocalBus to m-bit vectors required by the coprocessor and
vice versa

Besides the two main functions, it also provides access to configuration registers, perfor-
mance counter and status registers. These will be described in detail in Chapter 5.

4.2 Coprocessor design

As we have already stated, the coprocessor consists of two main parts. The first is a data
path offering all the required data operations and the second is a microcontroller that
controls the data path so it does desired computations. We will first focus our attention at
the data path of the coprocessor and then consider what we require from our microcontroller
to be able to control the data path effectively.

4.2.1 Data path

Even through we have redone the design from the scratch, we first focus on the Figure 4.2
showing the data path architecture used in [2].

Let us now briefly discuss each component of the data path:

• Input – this is an m-bit vector coming from the outside interface.

• Output – this is an m-bit vector for the outside interface.

• Data memory – is a register file consisting of 16 or 32 m-bit registers. The number of
registers depends on the desired application, 16 is minimum required for projective
coordinates, 32 allows more complicated microprograms to be implemented without
changing the design.
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• W - is a work register, m-bit wide.

• Invertor [sic] – is an arithmetic unit fulfilling a dual role in the design. In both bases
it performs field element multiplication. In normal basis it also performs element
inversion, while in polynomial basis it provides field element division.

• Squarer – is a dedicated squaring unit, because in both bases squaring can be done
much more effectively than multiplying a field element by itself.

• Shift – is a rotate left combination logic and is used mainly to move through individual
bits of the k we multiply our point with.

• XOR – performs field element addition, which is a simple bitwise XOR.

Figure 4.2: Data path architecture used in [2], figure taken from there

The design of this unit has been driven by requirement of affine coordinate algorithms
for scalar multiplication (Figure 2.2, Figure 2.3). The main constrain put on the design
is that, with exception of XOR, all units are fed by data from the register file. We have
considered whether this would prove to be an obstacle for implementation of projective
coordinate’s algorithms. We found that while the algorithms as given on Figure 2.4 and
Figure 2.5 could suffer a performance drop, especially where we do two squaring of an
element in a row, it is very easy to avoid this by reshuffling the operations a little.

Another thing worth considering in the design are the multiplexers selecting W and
memory source. While there are four different sources drawn for W register, we have to
taken into account the fifth, implied, source. This source is the W itself, with function of
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Clock Enable. We therefore have three sources for memory and five sources for W regis-
ter. While this does not hinder performance, it is inefficient in terms of microinstruction
encoding. We need two bits for memory source and three bits for W source.

We have decided that the Input wires can be easily routed to memory multiplexer. The
reasoning is that the only time when we want to load data into the coprocessor is when the
scalar multiplication starts. And at this time we want to load several vectors into memory
and therefore have no need to load the vectors into W register first.

Multiplier

Squarer

Register file

W

ROL

Output

Input

Normal

Multiply
Invert

Square

Polynomial

Multiply
Divide

Square

Figure 4.3: Modified data path architecture used in our design

The final architecture of data path we use (Figure 4.3) is very similar to the one used
in [2]. The only difference in the design is the aforementioned rerouting of the input wire
from W register multiplexer to memory multiplexer.

The rest of the changes is done for the sake of clarity of the figure. We added a wire
acting as Clock Enable on W register, renamed Invertor [sic] to more fitting Multiplier and
hinted that the Multiplier and Squarer units are interchangeable.

4.2.2 Microcontroller

The data path is designed to be able to perform scalar multiplication algorithm in both
affine and projective coordinates. These algorithms however significantly differ, so we also
need an easy-to-reconfigure controller to perform the required algorithms. We have decided
to use a microprogrammable microcontroller.

First let us define the difference between a program in assembler and microprogram in
microassembler (uASM). A microinstruction in uASM directly determines value on each
control signal in the controller in any combination desired. An assembler instruction con-
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sists of one or more microinstructions. Instruction is usually encoded in fewer bits than
there are control signals in the controller, while microinstruction has one bit for each con-
trol signal. As a result, microinstructions give the programmer better control over the
inner workings of the controller, but the programming itself is more demanding, while
instructions require more logic inside the controller (instruction decoder) and hardwired
instruction decoder, but give programmers more comfort.

Table 4.1: Control signals in data path
Name Width Usage
DATA_RST 1 Resets registers and finite state machines

in the data path
START_MUL 1 Starts multiplication
START_DIV 1 Starts division (polynomial basis) or inver-

sion (normal basis)
WROP 1 Write operand into Multiplier
ADDR_RD 5 Read address for register file
ADDR_WR 5 Write address for register file
MEM_WE 1 Register file write enable
W_SOURCE 2 Select signal for multiplexer before W reg-

ister
M_SOURCE 2 Select signal for multiplexer before register

file

Table 4.1 summarizes control signals required for our data path design. We see that
there are only nine control signals a programmer has to control, so microinstructions are a
viable option. Please note that while the address and select signals use more wires, there
can be only one value on them per instruction, so the programmer does not have to control
each wire individually.

A
dd

r(
0)

B
ra

nc
h(

1:
0)

Control signals
(18:0)

brAddr(0)
W_IS_0
W_MSB
READY

nextAddr(11:0)

Figure 4.4: Microcontroller block diagram
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Besides the control signals, each microinstruction also contains address of the next in-
struction and a branch condition. This branching mechanism is quite different from normal
assembler programming. There we typically have a program counter register that is in-
cremented each cycle by a constant and program goes through instructions in the order
they are written in memory. To change the next address we use jump instructions, which
overwrite the program counter by address of a target instruction. Conditional jumps first
check their condition and then either do or do not overwrite the program counter value.

Compared to that, each microinstruction carries address of the following instruction. It is
therefore possible to have the whole program in memory backwards. From the performance
point of view, there will be no difference between different ordering of microinstructions in
memory. The only exception is the first microinstruction, which should be at address 0, as
this is the value to which address latch is reset.

We can see that there is no need for special unconditional jump instructions, as each
microinstruction basically is also an unconditional jump. As we can see on Figure 4.4,
conditional jump is performed by replacing the lowest bit or bits by external signals. We
will explain the jumps using examples shown in Figure 4.5. The first line states, that the
address of the next instruction is 01110. In the second line we see how a one bit condition
is used. On the second line, the last bit of the target address is replaced by a signal and the
final target address can therefore be 01110 or 01111. Unlike normal assembler instructions,
microassembler also allows jumps with multiple targets. This is shown on the last line,
where the last two bits of target address are replaced by a two-bit signal.

Please note that even through the target address is 01110, the four possible outcomes are
not four addresses from 01110 on as we might have expected, but rather addresses 01100,
01101, 01110 and 01111. To avoid confusion in this matter, target address of a conditional
jump microinstruction is always divisible by the number of possible targets, i.e. ends with
at least as many zeros as there are bits of address that will be replaced.

Figure 4.5: Examples of conditional jumps

For our algorithms we need only three different conditional jumps, which are summarized
in Table 4.2. We also need one more branch condition which replaces the last bit of an
address by the last bit of the address itself, i.e. performing the unconditional jump. This
is necessary because of the way jumps are wired in the design, as is clear from Figure 4.4.

We give a full description of our microassembler in Chapter 5.4.
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Table 4.2: Jump conditions
Name Signal is 1 when:
IS0 Content of W register is equal 0.
RDY Multiplier is signaling ready, i.e. the oper-

ation has finished.
MSB The most significant bit of W is 1.

4.3 Squarer and Multiplier

First of all we should note that both Squarer and Multiplier have been provided from
previous work. Considering they had been thoroughly tested already, the requirement was
to use them with as minimal changes as possible. For more details on their inner workings
please consult [8], [11] and [12]. In this work we shall only briefly describe the algorithms
used in them.

We will first give a brief description of Squarers for each basis and then focus on the
Multipliers.

4.3.1 Squarers

Squaring an element can be achieved using purely combination circuits, both in normal
and polynomial basis.

For normal basis, the squaring is represented by a simple rotate left by one bit:

α = (αm−1 · αm−2 . . . α1 · α0) (4.1)
α2 = (αm−2 . . . α1 · α0 · αm−1)

Squaring in polynomial basis is a little more complicated:

α =
(
αm−1t

m−1 · αm−2t
m−2 . . . α1t

1 · α0t
0
)

(4.2)

α =
(
αm−1t

2(m−1) · αm−2t
2(m−2) . . . α1t

2·1 · α0t
2·0
)

We notice that the coefficients at odd positions (t has an odd exponent) are zero. There-
fore it is enough to spread the squared polynomial and then just apply polynomial re-
duction. As this reduction also appears in the Multiplier unit, we will now give a simple
example how this works. Let us say we want to square a field element represented as 1101.
The irreducible polynomial we use is t4 + t+ 1, therefore t4 = t+ 1.

We will now describe individual steps of the process show on Figure 4.6:

1. This is the “spread” step, the actual squaring. We take our original t3 + t2 + 1 term
and interleave it with zeros to get t6 + t4 + 1. However we need to have maximal
exponent less than or equal 3. We therefore have to reduce the result.

2. We reduce the t6 term using equation t6 = t3 + t2, which we get by multiplying
equation t4 = t+ 1 by t2.
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3. There is no t5 term, so we do not reduce by t5 = t2 + t.

4. We reduce the term t4 using equation t4 = t+ 1 to get the final result t3 + t2 + t.

Figure 4.6: Squaring of 1101 in polynomial basis

We notice that by using the reducing polynomial from left to right, the result of reduction
can never have a new 1 to the left of reducing polynomials current position. This way we
can reduce a polynomial of an arbitrary length l to field polynomial length m in only l−m
steps.

Figure 4.7: XOR network for squaring in GF (24), polynomial basis

While this might seem like a sequential algorithm, we notice that the same result can
be achieved by a simple XOR network show on Figure 4.7. This network, referred to as
squaring matrix in [4], is the key to our squarer. It might seem that the network will have
an unacceptable depth of logic, with one level for each reduced bit. However, it should be
noted that for the sake of explanation, the Figure 4.7 shows the network in relation to the
reduction algorithm, not in its optimized form. We can, for example, leave out the second
row of XORs, because there will always be zero at the t5 position. The same is true for
larger vectors. We can leave out all XOR levels corresponding to reduction of odd bits.
After full optimization, we get no more than three layers of 2-3 input XORs for m = 162.
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The previous work on this topic required an external tool to generate this XOR network,
which is contrary to our goal to have the design as self-contained as possible. Therefore, we
have decided to leave the network generation and optimization to synthesis tools, providing
only behavioral description of the reduction algorithm. Please consult the Chapter 5.2.3
for more details.

4.3.2 Normal basis multiplier

As was said before, the normal basis Multiplier unit (offering element multiplication and
inversion) has been provided from previous work. This unit implements Itoh-Teechai-Tsujii
algorithm [17] for field element inversion. Multiplication is done using a pipelined digit-
serial Massey-Omura algorithm [6]. This multiplier can process several bits, called a digit,
in one cycle. The only drawback of the units we use is that the number of bits processed in
one cycle (digit-width, denoted D) has to divide the key length m. However, other versions
of these units exist that do not have this constraint. For more details please see [8], [11]
and [12].

There is one modification we had to do to allow key length change via a single configu-
ration constant. To explain that, we have to briefly describe the multiplication algorithm
used. The algorithm is show on Figure 4.8. Please note that the vectors have their least
significant bit on the left, so LeftShift operation is what we usually call right shift.

Figure 4.8: Normal basis multiplication, taken from [4]

The important part of the algorithm is the multiplication matrix M. This is a relatively
sparse matrix. The number of 1s in a row determines the type of the matrix. Matrices
with type 1 and 2 can be easily computed. Matrices with higher type require high precision
mathematic libraries to compute. Please refer to [4] for more details. The requirement
of high precision libraries prevents us from computing the matrices directly during VHDL
synthesis. Previously, a special package containing the matrix has been generated for
the required key length. However, this requires us to use external tools to generate such
package every time we want to change key length. This goes against the philosophy of a
self-contained design.

We therefore wanted to pre-generate multiplying matrices for all possibly key lengths.
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Generating a single VHDL file containing an array of matrices proved to be unviable,
because the resulting file had over 8MB and took very long to compile. We therefore
decided to use ability of modern synthesis tools to load constants from a file, generated
a file containing matrix representation for each key length and use an impure function to
load this file as constant.

We represent this sparse matrix by an array of m by T integers, where m is the key
length and T is the matrix type. The integer denotes column where 1s are in the matrix.
If the integer is -1, then the number of 1s in this row is lower than T and this 1 does
not appear in the matrix. Unfortunately, Xilinx Synthesis Tools can load only bit vectors
during synthesis. We therefore store all matrices in bit vector format and convert them
to integers in the load function. While this does increase size of the matrix files, it poses
no other drawbacks and allows simple change of key length without compiling extremely
large packages.

x

x

x

x

x

x

x

x

Figure 4.9: Example of multiplication in GF (28)

4.3.3 Polynomial basis multiplier – multiplication

The previously used multiplication unit did not offer any possibility of processing several
bits at once. We think this is a major drawback, as it does not allow a fair comparison with
the normal basis unit that supports this feature. We have therefore decided to redesign
the whole Multiplier unit from scratch, implementing digit serial multiplier described in
[5].

Let us first consider the multiplication itself. The example on Figure 4.9 shows multi-
plication of 1010010 × 10011101 in GF (28). We take the first operand (A), multiply it
by 0th bit of the second operand (B). We add 2nd with A shifted to the left by 1 and
multiplied by 1st bit of B and so on, until we have the 8th line with the A shifted to the
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left by 7 and multiplied by 7th bit of B. We then add these eight lines together for the final
sum and as the result is longer than eight bits, reduce it using the reducing polynomial
t8 + t4 + t3 + t+ 1 = 0.

We notice that this is almost identical to the well-known manual decimal multiplication.
There are however some differences. We do not multiply A by anything else but 0 and 1.
We therefore need only m AND gates for each line, where m denotes the polynomial length.
Also, considering this is multiplication in binary finite field, there is no carry between the
digit places. So sum in each column can be done using only XOR gates, as odd number of
1s means 1 in the result, an even number means 0 in the result.

It should also be noted, that for the correctness of the result it does not matter whether
we first add all the results together in one long 2m − 1 register and then reduce, or
immediately reduce A after shifting it left by one. See Figure 4.10.

Figure 4.10: Multiplication with immediate reduction

We can see, that the number of required gates for purely combinational multiplication
is m2 AND and the same amount of XOR gates. While this might be viable for m = 8,
we would need about fifty thousand gates for key length 162, not counting the reduction
logic. It is therefore obvious that the multiplication has to be pipelined in some way.

The previous version of the multiplier used multiplication shown on Figure 4.10, com-
puted each line in one clock cycle and accumulated in an m-bit result accumulator. After
m cycles, the multiplication was finished and the result available in the accumulator.

However, we already stated we want to have a multiplier with configurable digit-width.
We use a method described in [5] and depicted on Figure 4.11. It is virtually a combination
of the two approaches to the multiplier. Let us describe the four steps (cycles) shown on
the figure. The digit-width D is 2.

1. We multiply A by digits 0 and 1 of B, add together and store in accumulator. We
shift A left by two and reduce it.

2. We multiply A by digits 2 and 3 of B, add together with the accumulator and store.
We shift A left by two and reduce it.

3. We multiply A by digits 4 and 5 of B, add together with the accumulator and store.
We shift A left by two and reduce it.

4. We multiply A by digits 2 and 3 of B, add together with the accumulator and store.
After final reduction of the accumulator, we get the result of multiplication.
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Figure 4.11: Digit-serial multiplier

The method described in [5] claims that the digit-width D should not be greater than
difference between the positions of the first two nonzero coefficients in the reducing poly-
nomial. For GF (28), with the reducing polynomial t8 + t4 + t3 + t+1 = 0, the maximal D
is 4. While this is advisable and we keep this recommendation, using a larger D does not
make the algorithm unusable. The only difference is that the circuit that shifts left and
reduces A would become a bit more complicated, as some dependencies of the reduction
order are then introduced.

4.3.4 Polynomial basis multiplier – division

In normal basis, we can divide only by pairing Itoh-Teechai-Tsujii inversion algorithm
with a multiplication. On the other hand, polynomial basis allows us to use Extended
Euclidean Algorithm to directly compute field element division. We use the algorithm by
prof. Benjamin Arazi, described in [1], found on DVD. We will now give a brief outline of
how the algorithm works. Please note that we have the least significant bit as the rightmost
bit of a vector, while prof. Arazi has it as the leftmost bit of a vector, which might cause
some confusion.

The main difference between our approach and the approach described in [1] is that the
article suggests loading register R3 with 0 . . . ...01 and computing inversion of b(t), while
we load it with a(t) and directly compute the result of a(t)/b(t). The algorithm also comes
in two variants regarding the used termination condition. We will describe both variants
and, as the actual difference in code is very small, we implement and compare effectiveness
of both.



CHAPTER 4. ANALYSIS 25

On Figure 4.12 we see the flowchart of the first approach. All shifts are right shifts. All
additions are simple bitwise XOR of the bitvectors. R0 is a m+ 1 bit vector, R1, R2 and
R3 are m bit vectors. Operations between R0 and other vectors use the lower m bits of
R0. The algorithm performs the following steps:

1. Initialize – Load R0 with reducing polynomial p(t), R1 with divider b(t), R2 with
0, R3 with dividend a(t) and h0 with vector length m.

2. If R1(0) = 0 then Shift R1 and R3 right, goto 2

3. If R1 = 1 then Stop; R3 contains a(t)/b(t)

4. If R0(0) = 1 then R0 = R0 +R1; R2 = R2 +R3

5. Shift R0 and R2 right; h0 = h0− 1

6. If R1(h0) = 0 then goto 4

7. R1 = R1 +R0; R3 = R3 +R2; goto 2

Start

R0 = p(t)
R1 = b(t)
R2 = 0
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Figure 4.12: Extended Euclid Algorithm flowchart, R1(h0) variant

Checking whether an m-bit vector R1 contains only a single 1 on the rightmost position
might, for large m, require significant resources. Roughly log2(m) layers of logic containing
m two-input AND gates are required to check this conditions.

Therefore, a second approach if offered in the paper, using h0 as termination condition.
Flowchart of this approach is on Figure 4.13:

1. Initialize – Load R0 with reducing polynomial p(t), R1 with divider b(t), R2 with
0, R3 with dividend a(t) and h0 with vector length m.
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Figure 4.13: Extended Euclid Algorithm flowchart, h0 variant

2. If R1(0) = 0 then Shift R1 and R3 right, goto 2

3. If R0(0) = 1 then R0 = R0 +R1; R2 = R2 +R3

4. Shift R0 and R2 right; h0 = h0− 1

5. If h0 = 0 then Stop; R3 contains a(t)/b(t)

6. If R1(h0) = 0 then goto 3

7. R1 = R1 +R0; R3 = R3 +R2; goto 2

Another potentially expensive operation is extracting h0th bit from R1. We can avoid
this by using an m-bit vector for h0, instead of an integer. We start with a single 1
in the leftmost position and then shift it right instead of decrementing h0. To get h0th

bit we simply AND h0 with R1 and check whether the result contains a 1. While this
does simplify extraction of the h0th bit, it might seem we lost the advantage of a simpler
termination condition. However, unlike for R1, we know that at all times h0 contains only
a single 1 and when it reaches the rightmost position we can terminate. There is therefore
no need to check the whole vector, only the lowest bit.

4.4 Verification methods

A very important part of each design project is verification and testing. Verification tests
whether a design behaves according to its specification. Testing then determines whether
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the actual product matches our design. It can also be said that verification is used to
determine whether design does what we want and testing determines whether hardware
behaves the way we told it to. In FPGA design, the testing usually focuses only on
peripherals, because the chip design itself is checked by synthesis and programming tools.
As we are using a well tested platform and do not implement the PCI interface ourselves,
we do not need to perform testing. We therefore focus only on verification, with testing
limited only to checking that the final hardware implementation gives us the same expected
results.

On Figure 4.14 is an example diagram we will use to explain the basics of verification.
This is not diagram of our verification setup, because, as we explain later, our setup varies
from the standard model in several details. We can see several different parts:

• Testbench – the main top level entity that, for the purposes of verification, emulates
the whole environment in which the design will work. Does not have any ports.

• DUT/UUT – Design under test or Unit under test. It is instantiation of the top
entity of design we want to verify.

• BFM – Bus functional models of peripherals. We connect a functional model of an
appropriate peripheral to design’s ports. Typically, BFMs can:

– Initiate a transfer according to the protocol.
– Accept transfer, while checking the protocol.
– Check whether the transfer was expected.
– Alternatively, return content of the transfer.
– Initiate a transfer violating the protocol in a specific manner. This serves to

test DUT’s ability to recover from errors

• Test – is an entity that controls all BFMs, giving them commands what to send to
the device and what response to expect.

• Testcase – a specific architecture of the test entity, one for each verification test, e.g.
thoroughly testing PCI and PS/2 peripherals in separate testcases.

The testbench used in our project is show on Figure 4.15. The main difference is in the
PLX bus functional model. This is the bus between PCI bridge and FPGA. This BFM
unfortunately does not allow an easy access to the data read from design. The test process
has to directly read from the signals going between the design and BFM. Another problem
is that the BFM is controlled from procedures that have to be directly in the testbench.
We therefore decided abandon the system with one testbench and interchangeable test
architectures and use several different testbenches, one for each test, where tb is the main
testing process.

The standard procedure requires two separate teams. One team is doing the design
and the other team is, based on exactly the same set of requirements, doing verification.
Therefore, when the verification fails it can mean there is an error in design, an error in
verification (testcases or BFMs) or that the requirements are too loosely specified and can
be interpreted in two different ways.

Unfortunately, we could not use this scheme. We therefore faced the main danger of
a single team approach, repeating the same mistakes in both design and verification. As
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Figure 4.14: Example testbench block diagram

this was an unacceptable risk, especially on the field of cryptography, we had to choose a
different approach to test the verification code itself.

The first option we considered was to use an external tool to generate inputs and expected
responses. The test itself would then just load the inputs into the design and check the
results against expected outputs. While this would allow us to use already tested third
party tools, we would have to invoke these tools whenever we wanted to change our tests.

Another major drawback of this approach would be complicated debugging of design. If
we have all algorithms implemented in VHDL, we go through them step by step and check
waveforms againsts results of each suboperation.

We therefore decided to us a hybrid approach. We implemented all the algorithms in
VHDL and used the external tools from [2] to test their correctness. Once the algorithms
have been thoroughly tested, we use these to test the design.

We can divide the required algorithms into roughly two different groups. In the first
group we have algorithms for point generation, addition, doubling and scalar multiplication
in both affine and projective coordinates. These algorithms are independent on the basis
used. The second group consists of base specific algorithms like field element multiplication,
division, squaring. A special algorithm that should be mentioned is quadratic equation
solver. This is necessary to generate points that satisfy the elliptic curve equation.

4.4.1 Code coverage

There is no objective measurement of verification quality. The final evaluation of veri-
fication is always done by a team review, where reviewers try to determine whether the
verification really covered the whole design and all its options.

However, while there is no objective measurement, there are several statistics that can
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Figure 4.15: Cryptographic coprocessor testbench

help in quality evaluation. These are called code coverage and, in the basic type (state-
ment coverage), show how many statement lines have been activated by the verification.
For example statement coverage 75% means that a whole quarter of the design remains
unverified, the statements were not needed during verification.

The other code coverage statistics include:

• Branch – percentage of branches taken. Each if can be either taken or not taken.
Branch coverage 100% means that each if has been both taken and not taken during
the verification.

• Condition – is similar to branch coverage. This however determines whether each
part of each condition has been exercised. For example, condition (A=1 or B=0)
that has only ever been considered when A=B=1 will have 50% condition coverage.

• Expression – is similar to condition coverage. The only difference is that while con-
dition coverage evaluates expressions in conditional statements, expression coverage
evaluates right hand expressions in assignments.

• Toggle – evaluates whether each signal and variable was toggled from 0 to 1 and from
1 to 0.

From these, the most important statistics are statement and branch coverage. We want
to know that all our code has been tested and that all if statements were taken both ways.

There are always some statements that should not be executed during the normal course
of design operation. Typical examples are assert statements in finite state machines, that
check that the finite state machine does not enter an unknown state. We do not expect
verification to force this situation and therefore the correct verification cannot have 100%
statement coverage.

To avoid the necessity of checking whether the missing statements are all of this nature,
the verification tools offer statement exclusion. In the first run of the coverage, we can
manually exclude all statements that should not be included in the statistics. The fol-
lowing runs of the verification will exclude these statements. We can therefore expect a
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well-verified design to have 100% statement coverage. Correctness of exclusion should be
considered in the final review.
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5 Implementation

In this chapter we will describe significant implementation details of our coprocessor. We
first describe the top level entities with the main focus on ECDSA_top special registers
(refer to Figure 4.1). Then we describe the data path and microcontroller and finally
describe functions provided by the verification libraries.

5.1 Top level design

As was already stated, the top level entity consists of basically two parts. The first part
provides communication used during the normal operation of the coprocessor, the second
provides direct access to microprogram memory and allows changing the microcode. We
will describe only the first part, because the second path is extremely straightforward and
almost directly translates LocalBus signals into memory control signals.

Table 5.1: Control registers
Name Addr R/W Function
readL 0x00 R Start address of the POLY_OUT register
readH 0x04 R End address of the POLY_OUT register
writeL 0x08 R Start address of the POLY_IN register
writeH 0x0C R End address of the POLY_IN register

writeAt 0x10 R/W Write: Write a polynomial from
POLY_IN to register X in coproces-
sor register file (X is the written value)
Read : Last written address

readFrom 0x14 R/W Write: Read a polynomial from register X
into POLY_OUT register (X is the writ-
ten value)
Read : Last written address

Ctrl 0x18 R/W Write: bit 1: Reset; bit 0: Start micropro-
gram
Read : bit 1: Normal (1) or Polynomial (1)
basis; bit 0: microcontroller ready; bits 16-
31: key length

perfCnt 0x1C R Status of the performance counter in mi-
crocontroller

The communication with coprocessor is done through a set of special registers. Those
are summer up in Table 5.1. The main issue with these registers comes from the mixed
addressing modes in the design. Transactions over PCI bus use 32b words, so all registers
should be 32b aligned. The addresses passed to tools and functions communicating with
Combo6X card are byte oriented and thus all registers that give addresses have to give
them in bytes. The last address mode is used by LocalBus and is in 16b words and each
PCI transaction results in two consecutive LocalBus transactions. Therefore, while the
writeL register is at address 0x08, it is at 0x04 in the LocalBus address space and refers to
register number 2. Keeping this in mind, the implementation of constant registers is very
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straightforward.

We will now give an example how are these registers used in the normal operation of the
coprocessor. The steps are:

1. Read the Ctrl register, check that the basis and key length match the expected values.

2. Write 0x2 to Ctrl register to reset the coprocessor and performance counter.

3. Read the writeL register to get the base address of POLY_IN.

4. Split curve parameter A into 32b words and write them to POLY_IN register range,
starting with the lowest word written to the address read from writeL.

5. Write 7 into the writeAt register. This starts process of transferring the polynomial
in POLY_IN to register 7 of the register file. Our algorithm implementations expect
curve parameter in register 7. See Appendix A for full list of register numbers.

6. Wait until bit 1 in Ctrl is 1, signaling that the coprocessor is ready for another
command.

7. Repeat steps 3 to 5 until all necessary parameters have been loaded (B, k, X and
Y ).

8. Write 0x1 to Ctrl, starting the microprogram execution.

9. Wait until bit 1 in Ctrl is 1, signaling that the coprocessor is ready.

10. Read the readL register to get the base address of POLY_IN.

11. Write 18 into the readFrom register. This initiates transfer of polynomial in register
18 into POLY_OUT. Register 18 contains X coordinate of the result.

12. Wait until bit 1 in Ctrl is 1, signaling that the coprocessor is ready for another
command.

13. Read the polynomial in 32b words, starting at address read from readL. When all is
read, concatenate the result to get the desired m-bit result.

14. Repeat steps 11 to 13 to get the coordinate Y.

15. Read perfCnt register to determine how many clock cycles did the computation take.

From the implementation point of view, the interesting signals are reset, start and ready.
There are two major problems with these signals. First, they have to cross clock boundary
from the LocalBus clock domain to the coprocessor clock domain or vice versa. We use
two flip-flops to demetastabilize the signals in each direction.

The second problem is that we want the reset and start signals to be active only until
they take effect and then automatically deactivate them.

The reset is therefore set to inactive when ready is 1 (address register set to 0 and
no transfer to or from register file in progress) and perfCnt is 0. The start signal is
set to inactive is set to inactive when ready is 0. We assume that any microprogram
loaded into the coprocessor takes longer than propagation of the ready signal through
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demetastabilization. Should this assumption prove to be false, then the program could be
run several times, depending on when does ready signal 0 propagates through. However,
this would require the whole program to perform in less than three clock cycles of LocalBus
clock domain. As the clock in this domain run at 100MHz, this would mean both very
short microprogram and a very high coprocessor frequency.

Considering the typical usage of our implementation, we do not expect to ever encounter
such combination, because scalar multiplication generally takes tens of thousands clock
cycles. However, this might prove to be an issue in some future applications with extremely
different frequencies. Then it would be necessary to implement some kind of hand-shake
mechanism to address this issue.

5.2 Data path

The top data path entity of the coprocessor serves mostly as a framework that hosts the
two main arithmetic units (Squarer and Multiplier) and the register file. Besides these
elements, there are only two multiplexers, one that chooses input for register file and one
that chooses input for W register, and the W register itself.

The register file is a set of 32 m-bit registers, implemented using a behavioral description.
Virtex contains three different kinds of memory (for more details including coding examples
please see presentation on DVD):

• Register – each bit is in its own D Flip-Flop (DFF). This is very costly (area-wise)
and even though the name suggests it the right choice for registers, it is not used.

• DistributedRAM – 16 bits are stored in one Look Up Table (LUT). The ratio of
LUTs and DFFs on the chip is one-to-one, so this approach requires one sixteenth of
the area required by registers.

• BlockRAM – uses dedicated RAM circuits on the chips. The main problem is that
for reading, BRAM required we have either the output data or the read address
registered. This means that there is one clock delay between address and data.

Contrary to the general belief, register files are not implemented from DFF registers.
We do not need to reset the whole register file at once, so we can use RAM instead.
While BlockRAMs are the best option from the used area point of view, they cannot
act as combinational logic when we read from them. This means that BlockRAMs, unlike
DistributedRAM, cannot provide data in the same cycle they have been given read address.
We will now explain why we require this combinational behavior.

Let us assume that we want to multiply two field elements stored in registers SX and
SY. The Figure 5.1 contains two examples how such a code might look. The first example
shows what we consider to be the natural way to write such code, with data request and
operation on them specified in the same microinstruction.

However, this requires the following data flow:

• Cycle 0 – feed microinstruction address into microprogram memory

• Cycle 1 – register file address and control signals are available
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; writes SX into Multiplier
; writes SY into Multiplier

; Starts the multiplication

; requests SX be read
; requests SY and writes SX

; writes SY
; Starts the multiplication

Figure 5.1: Microcode examples for multiplication: a) DistributedRAM, b) BlockRAM

• Cycle 2 – all data have to be available before this clock cycle, because the control
signals are processed on the rising edge that divides clock cycles 1 and 2

This obviously requires having memory that is able to give data in the same clock
cycle it has been given a read address, which limits us to using DistributedRAM. The
second example on Figure 5.1 would allow us to use BlockRAMs for register file, but we
consider this programming model to be very unfriendly and we therefore opted to use the
DistributedRAM approach.

5.2.1 Squarers

We will now describe the Squarer unit implementation. We already said that squaring in
normal basis requires only rotation left. As this is an extremely straightforward one line
function, we will not describe it in any detail.

Instead, we will focus on the polynomial squarer. We stated that in the previous work,
an external tool had been used to generate the required XOR network for reducing the
polynomials. The tool generated a network very similar to the one on Figure 4.7. The
only optimization done in this tool was leaving out the odd lines of the network, where
there is always 0 in the spread polynomial. The rest of the optimizations had been left to
synthesis tools.

Our idea was very simple. The synthesis tools can cope with and optimize a XOR
network with the most obvious optimization (XOR with constant 0) already done. Could
we perhaps use VHDL for statements to generate the XOR network in the first place? The
resulting code is on the Figure 5.2. The process can be divided into two parts. In the first
part we spread the input polynomial into double length. The second part then defines how
to reduce the double length polynomial back into m bits. ReductP are the lowest m bits
of the reducing polynomial. The highest bit is always 1, so we do not have to store this
highest bit.

Our verification proved, that this circuit functions in exactly the same way the one from
previous work does. However, we were interested not only in the functionality, but also
in the optimality of the result. We compared the result for 162 bit length using Synplify
Pro RTL viewer and the circuits were identical. We therefore consider it safe to assume
that both approaches are equal. The main advantage of our approach is that we gained
independence on external tools with no drawback at all.
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Squarer_P : process(PolyI)
variable Poly_int : PTypeFull;

begin
Poly_int := (others=>’0’);
for i in M-1 downto 0 loop

Poly_int(i*2) := PolyI(i);
end loop;
for i in 2*M-1 downto M loop

if Poly_int(i) = ’1’ then
Poly_int(i) := ’0’;
Poly_int(i-1 downto i-M) :=

Poly_int(i-1 downto i-M) xor ReductP;
end if;

end loop;
PolyO <= Poly_int(M-1 downto 0);

end process;

Figure 5.2: Polynomial squarer

5.2.2 Normal basis multiplier

There were three modifications we had to do in this unit. The first two modified the entity
interface to unify it with the rest of the design, the third modification concerned the way
multiplication matrix was acquired.

The original entity expects data in the 0 to m-1 order, i.e. the least significant bit is on
the left. Rest of the design expects this bit to be on the right. We therefore had to design
a wrapper the converts between the two representations.

The second modification concerned the way the required digit-width was passed to the
unit. The original design took this value directly from a configuration package. However,
we wanted this value to be passed through generic, so we had to modify all entities in the
unit to allow passing this generic.

The most important modification was not done on the unit itself, but on the package
containing the multiplication matrix. For the reasons explained in Chapter 4.3.2 we decided
to store the multiplication matrices in external files and load them as constant during
synthesis. The whole process consists of three parts; the code is show on Figure 5.3.

The first part is the constant declaration itself. Please note that this has to be declared
in a different package than the functions. It requires the functions to be fully defined,
including their body. Function body is declared in package body, while constant is declared
before that, so they cannot be both in the same package.

Next we have a function that returns filename of the file containing the desired multi-
plication matrix. The variable T contains the type of the desired matrix. It comes from
an array generated during the matrix generation. This is array is also stored in a separate
package. Value -1 denotes that we do not have multiplication matrix for the desired key
length and we would be trying to open a file that does not exist which would result in
synthesis error.

While this might seem to be the correct result if there is no multiplication matrix avail-
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constant ConnectTableB : TConnTableB := 
LoadConnB(FileName);

function FileName
return string is

constant c1 : string := "./nrm_data/nrm";
constant c2 : string := ".mtx";
begin

if T = -1 then  -- When we don't have this nrm basis
return "./nrm_data/nrm4.mtx";

end if;
return (c1 & integer'image(M) & c2);

end FileName;

impure function LoadConnB(
constant fname : string)
return TConnTableB is

file mtx : text open Read_Mode is fname;
variable lineIn : line;
variable res : TConnTableB;
variable vec : std_logic_vector(15 downto 0);
variable num : integer;
begin

if T = -1 then
assert not NBASE

report "Trying to use Normal Basis we don't 
have (M divisible by 8 typically)"

severity failure;
return res;

end if;
for i in 0 to M-1 loop

readline(mtx, lineIn);
for j in 1 to T loop

read(lineIn, vec);
num := conv_integer(signed(vec));
res(i)(j) := num;

end loop;
end loop;
return res;

end LoadConnB;

Figure 5.3: Loading multiplication matrix. a) the constant declaration, b) filename of file
containing the multiplication matrix, c) loading the matrix

able, we have to consider that the constant is loaded even when the design itself will use
polynomial basis. Unlike normal basis, the polynomial basis is not limited in key length.
Therefore, we do not want it to fail only because there is no multiplication matrix for
normal basis. A default file is therefore selected.

The third function loads the matrix itself. It has to be declared as impure, because
result of the function depends not only on the input parameters, but also on content of the
file. It is therefore not assured that the outcome of this function will always be the same.
While this does not concern us as we call it only once, it is still required by the VHDL’93
standard.

We can again see the check whether we have multiplication matrix for the given key
length. This time however, there is an assert added that will make the synthesis fail if
there is no multiplication matrix and the constant NBASE is set to true. The NBASE
constant switches the design between normal base (true) and polynomial base (false).
Therefore, if NBASE is true and T is -1, we are synthesizing a normal basis version of the
coprocessor, but do not have the required multiplication matrix.
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We can also see that we read std_logic_vector and the convert it to signed integer. This
is because Xilinx Synthesis Tool cannot load anything but bit vectors during the synthesis,
as explained in Chapter 4.3.2.

While generation of matrices of type 1 and 2 is simple, matrices of higher types require
high precision libraries ([4]). We therefore used tool [7] to generate all possible matrices
for key lengths between 2 and 1000.

5.2.3 Polynomial basis multiplier – data path

The polynomial multiplier consists of two main parts. A digit-serial multiplier and a divider
based on Extended Euclidean Algorithm. The block diagrams of both parts are on Figure
5.4. The two big arrows show the way data are loaded into the unit. First operand is
loaded and when the load signal is activated again the first operand is shifted into another
register and the second operand is loaded.

A
Main reduction

B
Shift register

C
Accumulator 

register

R1 R3

R2R0

Figure 5.4: Block diagram of polynomial multiplication and division

We notice that both units use a similar set of registers. We decided to explore the
possibility of implementing both algorithms over a single set of registers. Therefore, we
have six different architectures to compare.

The first architecture uses R1 as termination condition and extracts the h0th of R1 by
selecting it in the R1(h0) fashion. The second architecture uses h0 as the termination
condition and extracts the h0th bit the same way. The third architecture uses h0 as the
termination condition and extracts the h0th bit by representing h0 in hot one encoding,
ANDing h0 and R1 and checking whether is any 1 in the result.

Each of the three architectures is implemented twice, once using the same set of registers
for both units and once using a separate set of registers for the total of six architectures.

The reason why we are even considering using two sets of registers is that in FPGA there
are usually a lot of unused flip-flops. The reasoning then is, that it might be better to
build larger set of registers with relatively small amount logic connected to each than use
fewer flip-flops with a lot of logic around each. The synthesis tools could place the second
set of registers in the unused flip-flops with no negative impact on the chip area.

If this design is ported to ASIC, then we should always chose the single set of registers
solution, because in ASIC there no unused flip-flops already wired on the chip.

To avoid the tedious task of doing six different designs, we wrote each corresponding
pair of registers in a single process. This allows us to use signal declaration on Figure 5.5.
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-- Internal A and B signals
signal A_int : PType;
signal B_int : PType;
signal C_int : PTypeExt;
signal C_red : PType;
signal R0_int : std_logic_vector(M downto 0);

alias R1_int : std_logic_vector(M-1 downto 0) is
A_int(M-1 downto 0);

alias R2_int : std_logic_vector(M-1 downto 0) is
C_int(M-1 downto 0);

alias R3_int : std_logic_vector(M-1 downto 0) is
B_int(M-1 downto 0);

Figure 5.5: Signal declaration for unified register set

The declaration shown will result in a single set of registers used. To switch to two sets of
registers, we only have to change alias for signal in the declaration.

5.2.4 Polynomial basis multiplier – controller

Operation of the Multiplier is controlled by a Finite State Machine (FSM). As the two
functions of the Multiplier are never performed at once, we can use one FSM to control
both.

Control of the multiplication is fairly straightforward. There is a counter that is initially
set to

⌊
m
D

⌋
+1, wherem is the key length and D is the digit-width. This counter is decreased

every clock cycle. When it reaches zero it means that all m bits have been multiplied and
the multiplication ends.

Control of the division algorithm is more complicated. It also differs based on the
termination condition, because the two algorithms are slightly different. We will show the
version that uses h0 as the termination condition. On Figure 5.6 we show partitioning of
the dataflow diagram into FSM states. Please note that while the operation blocks (i.e.
the shift and adding) are drawn inside various states, they are actually on the borders
between them. The operations are performed with each clock edge, which also causes a
state transition.

The ST2 state might seem to be very complicated. The dataflow suggests that the three
conditions are evaluated in a serial fashion. However, please consider that in hardware, all
three conditions are evaluated in parallel. Therefore the critical path through this state is
only as long as the longest of the three conditions, not as a serial combination of all.

We show the FSM diagram on Figure 5.7. It is a Mealy type machine, but two states
have their own defined outputs like in Moore type. The FSM is depicted this way, mainly
to make the diagram more transparent. Each transition has a condition and output signals
attached to them. Where in the diagram a signal is tested for equality, it is an input signal
and transition condition. Where a signal is just named, it is an output signal the output
value is 1. Output value of unnamed signals is 0. Transition condition others is used when
no other transition condition is used.
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Figure 5.6: Partitioning of division into FSM states

The signals used in the diagram are described in Table 5.2. Three shifts in the table are
denoted as LFSR. This means linear feedback shift register and the performed operation
is shift and reduce using the reducing polynomial.

The way both left and right shift are done is on Figure 5.8. The left shift is performed
on register A during multiplication. However, unlike show on the figure, the register A is
shifted to the left by several (digit-width) bits. The right shift is used on registers R2 and
R3 during division.

We do not show partitioning and FSM diagram of the division algorithm using termina-
tion condition R1, because they are very similar to the ones shown here.

5.3 Verification libraries

We decided to use VHDL for verification, acknowledging the risk of repeating the same
errors can occur in both design and verification. We will now describe the requirements,
structure and functions and procedures we implemented.

There are three basic functions we require:

• Generate a random point on a curve

• Perform scalar multiplication in affine coordinates

• Perform scalar multiplication in projective coordinates

All the functions have to be available in both polynomial and normal basis. There are
two basic options how to address this requirement. The first, more direct, approach is to
have an affine scalar multiplication for polynomial basis as a separate function from affine
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S_RST
RESET; READY

S_DIV_ST1
SHIFT_R02

S_DIV_DONE

S_MUL

S_MUL_DONE

S_DIV_ST3

S_DIV_ST2

DONE_MUL = 1
RES_MULDIV; 

READY

START_MUL = 1

START_DIV = 1

R1(0) = 0
SHIFT_R13

R1(0) = 1 & 
R0(0) = 0

SHIFT_R02

R1(0) = 1 & 
R0(0) = 1

ADD_TO_R02

DONE_DIV = 1
READY

R1(h0) = 1
ADD_TO_R13

R1(h0) = 0 &
R0(0) = 0

SHIFT_R02

R1(h0) = 0 &
R0(0) = 1

ADD_TO_R02

START_MUL = 1
START_DIV = 1

DONE_MUL = 0
SHIFT_A; SHIFT_B; 

ADD_C

others
RES_MULDIV; 

READY

others
SHIFT_R02

others
READY

RST

Figure 5.7: Polynomial multiplier FSM

Figure 5.8: Left and right shift using reducing polynomial

scalar multiplication for normal basis. The disadvantage here is that while polynomial
and normal bases have different field element multiplication, the point addition and point
doubling algorithms are exactly the same. We therefore would have to code the same
algorithm twice with the only difference in the names of the called arithmetic methods.

We chose another way to deal with this problem. We use a three layer structure of
functions, organized this way:

• The lowest layer – basis specific functions like multiplication or division.

• The middle layer – function that allows setting the used basis and provides wrappers
for all basis specific functions. The wrappers select normal or polynomial version
depending on the set basis.

• The highest layer – provides the generic algorithms. The algorithms perform calls to
the wrappers provided by middle layer and are therefore independent on the basis
used.

Let us now focus on each of the three basic functions. The first function is random point
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Table 5.2: FSM signals
Name I/O Function
RST I Resets the FSM
START_MUL I Start multiplication
START_DIV I Start division
DONE_MUL I Multiplication is done
R1(0 I 0th bit of the R1 register
R0(0) I 0th bit of the R0 register
R1(h0) I h0th bit the of the R1 register
DONE_DIV I Division is done
others - When no other condition applies
READY O Signals that the unit is ready for next operation
RESET O Resets all counters and registers in data path
SHIFT_A O Shift register A left by digit-width bits (left LFSR)
SHIFT_B O Shift register B left by digit-width bits
ADD_C O Add result of the multiplication to accumulator C
RES_MULDIV O Result source; Multiplication (1) or Division (0)
SHIFT_R13 O Shift R1 (normal) and R3 (right LFSR)
SHIFT_R02 O Shift R0 (normal) and R2 (right LFSR)
ADD_TO_R13 O R1 = R1 +R0; R3 = R3 +R2

ADD_TO_R02 O R0 = R0 +R1; R2 = R2 +R3

generation. Please note that a random point in this context means a random point on an
elliptic curve, not an arbitrary combination of two random coordinates x and y.

5.3.1 Random point

First we need a function that will generate a bit vector of appropriate key length. We
use the random number generator package [3] to generate eight bit random numbers and
concatenate these into vectors of required length.

Using this function, we generate parameters a, b and point coordinate x. From Weier-
strass equation 2.4, we get quadratic equation which we need to solve for y :

y2 + xy +
(
x3 + ax+ b

)
= 0 (5.1)

We therefore need a function that will solve a quadratic equation. Solvers for normal
and polynomial basis differ, so we have to use the three layer structure to allow using the
same point generation function for both bases. The solver for normal basis uses algorithm
described in [4]. Solver for polynomial basis is based on algorithm implemented in [10],
especially where it concerns determining whether a solution exists. It requires a square
root of a field element. We implement square root by squaring the field element m-1 times
(algorithm from [4]).

Both solvers require the equation to be in format y2 + y = c. Please note that the
constant c does not change when we transfer it from the left to the right side, because
addition and subtraction are equal operations in GF (2m). We therefore use the following
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procedure to transform our equation into the expected format.

y2 + xy +
(
x3 + ax+ b

)
= 0 (5.2)

y2 + a1y + a0 = 0

z2 + z =
a0
a21

= c

y = z · a1

We use the first two lines to transform the equation, solve the equation on the third line
and use the formula on the fourth line to get the desired solution y.

5.3.2 Point multiplication

Once we have a random point, we want to perform the basic operation on it, scalar multi-
plication. The add-and-double algorithm itself (Figure 2.2) is the same for both affine and
projective coordinates, but the point addition and doubling is coordinate specific. This
time we decided to simply implement it twice, once for each coordinate system. Using
the same approach we have chosen for normal and polynomial basis would bring us no
advantages and more functions where a coding error can occur.

To implement the affine point addition and point doubling algorithm from Figure 2.3 we
need field element multiplication, squaring and division. Squaring could be implemented
using multiplication, but in both bases it can be implemented in a much faster way. Division
in polynomial basis is done directly using Extended Euclidean Algorithm, in normal basis
we use pair of inversion and multiplication functions.

Projective coordinates have a special algorithm for point doubling (Figure 2.4) and for
point addition (Figure 2.5). Both algorithms require many multiplications and squarings.
To get the final result in affine coordinates, we also need two field divisions. Another thing
required are constants representing 1 and 0 in the GF (2m). While constant 0 is same in
both basis and means that all bits are 0, the constant 1 is different. In polynomial basis, 1
is represented as a vector full of 0s with a single 1 in the least significant position. Normal
basis represents 1 by a vector full of 1s. For convenience, we provide two functions that
return these constants in the currently selected basis.

5.4 Microcode

To allow easy programming of the microcontroller, we had to develop a microassembler.
Without this, programming would have to be done by directly editing individual bits of
each instruction. While this is a possible approach, it is very tedious and very error-prone
way to program.

We therefore developed a simple microassembler that makes programming easier and
more readable for human programmers. The basic commands are summarized in Table
5.3.

The conditions that are currently supported are in Table 4.2. Addresses used in both
read and write commands are named in a special configuration file (see Appendix 2.5). The
names do not have any special meaning; they just make the programming more comfortable.
We only need to have the register numbering consistent between the microprogram and
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Table 5.3: Microassembler commands
Command Function
; comment Comments start with a colon and can be on individual line or after

a command.
LB:lab1 Label Branch, target for unconditional jump. Can be followed by

LC that has to be moved.
LC:lab2 Label Conditional, target for conditional jump, the following in-

struction will be placed to an even address. Must be followed by
two non-label commands. Both following commands must contain
a branch statement.

B:lab1 Branch, the next command will not be the next line but the one
after the corresponding LB:lab1 statement.

BC:cond:lab2 Conditional branch, the next command will be first or second com-
mand after the corresponding LC:lab2 statement.

R:addr1 Register file read from addr1
W:addr2 Register file write to addr2
RST Resets the data path of controller
WE Register file write enable
MUL Start multiplication
DIV Start division (inversion in normal basis)
WROP Write operand into Multiplier
WW Source of W is W
WMEM Source of W is register file (MEM)
WXOR Source of W is W xor MEM
WSQR Source of W is square of MEM
MW Source of MEM is W
MMUL Source of MEM is Multiplier
MROL Source of MEM is W rotated left by one
MINP Source of MEM is input from outside

the controlling application. Otherwise the program could write curve parameters and the
multiplied point into different registers than where they are expected by the microprogram.

Conditions, register file and W register multiplexers are also named in the same con-
figuration file so, should we desire, we could change name, order and numbering of these
commands.

We give an example of normal basis multiplication (Figure 5.9, 1) and division (Figure
5.9, 2) coded in our microassembler.

The multiplication first loads both operands (T2 and T3 ) and starts (MUL). Then we
have to perform two dummy instructions, because the normal basis unit has its RDY signal
invalid for two clock cycles after starting the unit. Next follows a loop that waits for RDY
to be active and when it is, it jumps to the last branch label.

Division in normal basis has to be split into two parts. First is inversion of the divider.
We load the divider (T0 ), start (DIV ), perform two dummy operations and wait for RDY
to be active. Please note that the inverted operand (T0 ) has to be on the units input



44 CHAPTER 5. IMPLEMENTATION

R:T2 WROP
R:T3 WROP
MUL
R:T2 ;dummy for Normal unit
R:T2 ;dummy for Normal unit
B:D_MUL_RDY_1

LC:D_MUL_RDY_1
BC:RDY:D_MUL_RDY_1
W:T2 WE MMUL B:D_MUL_FIN_1

LB:D_MUL_FIN_1

; X = X/Z^2
R:T0 WROP ;Invert
R:T0 DIV
R:T0 ;dummy for Normal unit
R:T0 ;dummy for Normal unit
R:T0 B:M_CONV_DINV_RDY_1
LC:M_CONV_DINV_RDY_1
R:T0 BC:RDY:M_CONV_DINV_RDY_1
R:SX WROP B:M_CONV_DINV_FIN_1
LB:M_CONV_DINV_FIN_1
MUL
R:SX ;dummy for Normal unit
R:SX ;dummy for Normal unit
B:M_CONV_DMUL_RDY_1

LC:M_CONV_DMUL_RDY_1
BC:RDY:M_CONV_DMUL_RDY_1
W:SX WE MMUL B:M_CONV_DMUL_FIN_1

LB:M_CONV_DMUL_FIN_1

Figure 5.9: Normal basis multiplication (1) and division (2)

throughout the whole operation, therefore we have R:T0 on each line until the inversion
finishes. Then we perform multiplication with dividend.

The affine algorithms use relatively few multiplications and divisions, so we implemented
the algorithm directly using these commands. However, the polynomial algorithm requires
many multiplications and the first attempt to implement it this way resulted in an unwieldy
code that was very error prone and very hard to debug.

We therefore decided to include macros that are expanded into a required sequence of
commands. The macros are summed in Table 5.4. The lab parameter is used as a prefix
for labels used by the expanded commands.

Table 5.4: Macros in microassembler
Macro Function
MULN(r1,r2,r3,lab) r1 = r2 · r3 (normal basis)
MULP(r1,r2,r3,lab) r1 = r2 · r3 (polynomial basis)
DIVN(r1,r2,r3,lab) r1 = r2/r3 (normal basis)
DIVP(r1,r2,r3,lab) r1 = r2/r3 (polynomial basis)
SQR(r1,r2) r1 = r2 · r2
ADD(r1,r2,r3) r1 = r2 · r3
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Using the macros makes programming the controller much easier. However, it does
not allow using direct low-level optimizations. We therefore offer access to the code after
macros preprocessing. There the programmer can do the desired low-level optimizations
and then proceed to compilation.

The compiler for this assembler is implemented in Java and based on a very simple split-
and-compare algorithm. Each line is read, stripped of comments, split by whitespaces and
each command on the line is evaluated. We decided to use the configuration file instead of
hardcoded values to allow modifying the design and compilation results without actually
recompiling the compiler itself.
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6 Results

We evaluate the design in three aspects. The first and most important aspect is correctness
of design. This is evaluated by verification. The quality of verification is estimated using
code coverage. We have already stated that we do not perform any real testing, because
the implementation platform and all IO units have already been thoroughly tested when
the Combo6X card and the IO units were released (please consult for more information
[16]).

The second aspect are synthesis results. We compare frequency and area of individual
design configurations.

The third aspect is performance. We use Combo6X card to measure number of clock
cycles requires to get results for a set of test points.

6.1 Verification

As we said before, the main problem of this project was that design and verification was
done by the same team. We therefore chose an approach where we use a set of pregenerated
vectors from [2] to test our individual functions. Once the functions pass this test, we
verify the design using vectors generated and computed by them. We also compute the
scalar multiplication in both affine and projective coordinates and crosscheck the results.
We would like to stress that while we consider this adequate for this project, a proper
verification by an independent team, including a formal review, should be performed before
using this design in a commercial product.

With no formal review available for our project, we rely heavily on code coverage to
prove correctness of our verification. We aim for 100% statement and branch coverage
after exclusion of unreachable statements.

Table 6.1: Unit testcases
Filename Function
tb_gener.vhd Generates test vectors for performance analysis,

no verification
tb_proj_base.vhd Basic testing of projective multiplication algo-

rithm by comparing with affine algorithm
tb_tst_af_nadd.vhd Point addition in normal basis and affine coor-

dinates
tb_tst_af_padd.vhd Point addition in polynomial basis and affine co-

ordinates, checked against values from [2]
tb_tst_norm_units.vhd Tests normal basis operations multiplication, in-

version, squaring and division against [2]

Our testcases can be divided into two major groups. The first group contains test of
individual units and algorithms, the second group tests the design. The brief summary
of these tests can be found in Table 6.1. We used the values from previous projects and
tested polynomial point addition against them. We had no results for normal basis point
addition, only basic operation tests. However, we consider this to be adequate, as the
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algorithm for point addition itself has been tested by polynomial basis and therefore, if the
individual operations are correct in normal basis, then the whole algorithm is.

We found one error in the design during the course of verification. When testing the
projective point addition algorithm, it gave us very different results from the affine point
addition one. We implemented several variants of the projective algorithm and all variants
gave us the same, incorrect, result. This error was caused by a faulty function for random
point generation. We generated points by choosing both coordinates x and y randomly,
instead of choosing x and computing the y as described in Chapter 5.3.1.

After correcting this error, all tests pass.

Table 6.2: Scalar multipliation testcases
Filename Function Cover.
tb_af_norm.vhd Normal basis, affine coordinates 100%
tb_af_poly.vhd Polynomial basis, affine coordinates 100%
tb_pr_norm.vhd Normal basis, projective coordinates 100%
tb_pr_poly.vhd Polynomial basis, projective coordinates 100%

The scalar multiplication testcases are summarized in Table 6.2. All tests have 100%
statement and branch coverage. To achieve this, we had to make several exclusions. We
have excluded all statements that involved check for unexpected states. These are in all
finite state machines, but also in all multiplexers. We also had to exclude the branch
in polynomial multiplier which allows division to be immediatelly followed by another
division. This situation never occurs in the tested algorithms, so the branch should never
be taken.

Instead, we chose code inspection as a verification method to verify this single branch.
This basically means that several reviewers read the code and discuss whether it is written
correctly. A single individual test run has also been performed to check that two divisions
in succession can be performed.

Because of project time constrains, we verified only for digit-width 1. This is another
reason while a complete formal verification and review process should be taken before con-
sidering the design for commercial purposes. We test the correct functionality of higher
digit-width in performance evaluation, where test performance and correct function for
digit-width up to 20, but this does not provide code coverage and does not replace verifi-
cation.

6.2 Synthesis

Once we have determined that the design is correct, there were two important aspects of
design to evaluate: how fast it is and how large it is. The speed is defined by maximal
frequency; definition of area depends on the chosen technology. Area in Application-specific
Integrated Circuits (ASICs) is defined in square millimeters. In FPGA, we can define area
by number of basic blocks used. Our implementation platform is VirtexII Pro FPGA and
we therefore use the FPGA area definition.

There two basic blocks available in each FPGA:
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• Slices – each slice contains (2-4 of each, depending on type):

– D Flip-Flops implementing registers (DFF)

– LUT4 – four input Look Up Tables that can be used for:

∗ Combination logic
∗ DistributedRAM

• BlockRAMs

From these we chose to evaluate the area by number of Flip-Flops, by number of LUTs
used as combination logic and by the total number of slices occupied by these. The design
uses BlockRAM for program memory and DistributedRAM for register file. This is same
for all variants of the design and can therefore be omitted from comparison.

To compare speed, we decided to use estimation provided by Synplify Pro. The decision
to use estimation instead of result of complete static timing analysis (STA) is again due time
constraint on this project. When we set a requested frequency and perform the complete
synthesis, the design will give us frequency very close to what we requested. If we request
frequency 10MHz from a design capable of running at 100MHz, the synthesis will give us
design running at approximately 11MHz. Therefore, to get the maximal frequency, we
have to set a requested frequency, synthesize, set it higher, synthesize again and repeat
until the synthesis fails due to timing constrains.

The problem is that each synthesis takes about 30 minutes and cannot be performed
automatically. We therefore opted for estimation, which required only one synthesis per
design variant. All design variants up to digit-width 20 proved to be able to run at 100MHz,
because they successfully synthesized into Combo6X, where the basic operation frequency
is 100MHz.

Table 6.3: Polynomial multiplier variants (m=180, D=6, V2P50)
Register
sets

Termination
condition

DFF LUT Slices Freq.
MHz

1 h0 1046 3501 2209 161.7
1 h0 fast 1221 3554 2238 158.3
1 R1 1045 3767 2357 161.7
2 h0 1592 3920 2418 151.3
2 h0 fast 1758 3951 2440 156.0
2 R1 1585 3957 2433 150.5

First we compare variants of the polynomial Multiplier architecture. We have three
variants based on the Extended Euclid Algorithm termination criteria and each of these
can operate on either one or two sets of registers. The results are in Table 6.3, we use key
length 180, digit-width 6, target platform VirtexII Pro 50.

We have assumed that the second set of registers will occupy unused DFFs in slices
already occupied by design. However, this is apparently not the case, as we see that the
total number of slices used is higher for two sets of registers. Also, the frequency is lower
in all cases, suggesting that the second set of registers required longer wire connections.
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Our other assumption, that the extraction of h0th bit from the register R1 will be easier
if h0 is represented by a shift register instead of a counter also proved to be wrong. This
variant comes out both larger and slower when one set of registers is used. In the two
register set variant it still the largest design, but also the fastest choice available.

Table 6.4: Coprocessor comparison (m=180, V2P50)
Normal Polynomial 1 set Polynomial 2 sets

Digit-
width

DFF Slices Freq
MHz

DFF Slices Freq
MHz

DFF Slices Freq
MHz

1 1543 1573 214.8 1234 2022 154.6 1886 2123 154.2
2 1543 1668 214.8 1218 1963 147.2 1883 2224 156.3
3 1462 1811 214.8 1218 1977 147.2 2182 2446 170.7
4 1462 1879 214.8 1220 2099 151.4 1763 2402 169.7
5 1540 2057 214.8 1522 2372 161.1 1886 2404 156.5
6 1543 2142 214.8 1225 2244 158.3 1827 2574 171.5
9 1327 2425 214.8 1498 2605 161.1 1888 2703 158.1
12 1423 2829 214.8 1240 2617 160.0 1841 3011 166.7
15 1514 3127 211.2 1749 3172 160.2 2384 3452 171.4
20 1499 3806 214.8 1468 3158 158.4 2196 3623 167.8

The main goal of our synthesis comparison was to compare normal and polynomial basis
against each other. We chose the h0 fast termination variant, assuming that it would offer
us the best performance. However, Table 6.3 suggests this is not the case and another full
set of measurements should be done.

We compared normal basis, polynomial basis with 1 set of registers and polynomial basis
with 2 sets of registers. We used key-length 180 and digit-widths from range 1 to 20. Due to
constrains of normal basis unit, we had to choose only digit-widths that divide key-length.

The first thing we notice is the almost constant frequency, independent on any digit-
width. This is caused by the fact that the estimation does not take into account wire lengths
and possible routing problems. We can therefore state only that the normal unit is probably
capable of running at about 135% of polynomial unit’s speed. No other conclusions can
be drawn from these results.

Another think we notice is the varying number of DFFs used. The extremes deviate
from the average by up to 10% for normal basis, 28% for polynomial with 1 set and 20%
for polynomial with 2 sets. According to the synthesis report most of the extra DFFs were
added by synthesis to lower fanout via register replication.

On Figure 6.1 we can see comparison of occupied slices in relation to digit-width used.
We see that all three variants of the design are roughly equal in size. However, for lower
digit-widths, we can see that normal basis with digit-width 6 occupies almost the same
number of slices the polynomial basis needs for digit-width 1.

In performance comparison we will therefore focus on comparing these two digit-width
sizes. However, we should bear in mind that the number of slices varies a lot and is not a
perfectly monotonous function. We should therefore always consider all three variants of
the design when choosing the right one for a given technology, especially when it is ASIC
and not an FPGA.
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Figure 6.1: Influence of digit-width on number of slices

6.3 Performance

The last aspect in which we evaluated our design was performance. Here we compared
normal basis versus polynomial basis and used both affine and projective coordinate rep-
resentation. For these tests we chose hardware implementation over simulation.

We had two main reasons for this decision. The first was speed of the performance
analysis. Simulation of each multiplication takes over a minute, while computing the same
operation in hardware is in order of milliseconds. The second decision was to evaluate
usability of Combo6X card as a cryptographic accelerator and for this we wanted to have
real implementation results, not just behavioral simulation.

We wrote a simple program that can read vectors from an input file, load the into the
coprocessor over PCI bus, start the computation, read back results and compare with
expected values, also read from the input file.

For our testing we again chose key-length 180. We used our VHDL libraries to generate
a set of thousand tests. Each of them uses a different elliptic curve, point and scalar to
multiply the point with. We measure the performance by number of cycles required to
finish the whole set of tests. The performance counter used counts cycles only when the
microprogram is not on address 0. Therefore it does not take into account reading and
writing to and from the Combo6X card. The results, with clock cycle averaged, are in
Figure 6.2.

We immediately notice, that there is a big difference between normal and polynomial
basis in the affine coordinate multiplication. The reason is that point addition in affine
coordinates requires many divisions and those are much more expensive in normal basis,
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Figure 6.2: Coprocessor performance in clock cycles

where Extended Euclid Algorithm cannot be used.

We also notice that this difference drops dramatically, with normal basis even outper-
forming polynomial basis when digit-width reaches 2. This is caused mainly by the fact
that the Itoh-Teechai-Tsujii inversion algorithm uses multiplication and therefore directly
benefits from higher digit-width. In polynomial basis, the still expensive division does not
benefit from higher digit-width in any way and the performance gain is therefore much
lower. Affine multiplication in polynomial basis is almost invariant with regard to digit-
width.

When we look at the projective coordinates, we can see that both bases have a very
similar performance, with polynomial basis outperforming normal basis by a slight margin.
We also notice that from digit-width 4, both bases outperform even the polynomial affine
multiplication. The reason here is that both bases benefit from higher digit-width, with
only two divisions in each scalar point multiplication.

Once we take into consideration the fact, that normal basis with digit-width 6 and
polynomial basis with digit-width 1 are of equal size, we can say that normal basis does
outperform polynomial basis, consuming only 55% of clock cycles. If we scale this by the
higher frequency suggested by synthesis estimation, we get only 40% computational time
with the same area requirements and both designs running at the maximal frequency. The
results are summed up in Table 6.5.
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Table 6.5: Average clock cycles performance
Normal Polynomial

Digit-width affine projective affine projective
1 695506.31 370685.69 158257.33 360636.49
2 382975.91 200116.07 134236.24 192427.48
3 278799.11 143256.53 126229.21 136357.81
4 226710.71 114831.26 122225.69 108322.97
5 195457.67 97774.30 119823.58 91502.07
6 174622.31 86402.99 118222.18 80288.14
9 139896.71 67450.81 115553.17 61598.25
12 122533.91 57974.72 114218.66 52253.30
15 112116.23 52289.07 113417.96 46646.34
20 101698.55 46603.41 112617.26 41039.37

6.3.1 Combo6X as accelerator

We wanted to evaluate not only the performance of the coprocessor core, but also of the
system as a whole, including the PCI latency etc. The basic idea was to determine whether
a PCI card such as Combo6X could be used as an accelerator for computers heavily using
cryptography.

We therefore measured not only clock cycles, but also the total time it took to compute
the test set. The results are on Figure 6.3. We can see that the curves of total time spent
on the measurement and the clock cycle curves behave in exactly the same way with no
apparent performance cap caused by PCI bus latencies.

We also considered measuring performance in a batch test, where we would load a whole
test set to an on-chip memory, process it in a batch and then read back all the results.
This would remove most of bus latency, as there would be essentially only two long burst
transfers. However, we consider this pattern to be very unlikely in normal practice and
the measurement would give us no information regarding usability.

Table 6.6: Percentage of multiplication to total time
Normal Polynomial

Digit-width affine projective affine projective
1 96.34% 95.32% 94.71% 97.31%
2 94.61% 95.66% 94.20% 95.59%
3 94.80% 90.73% 89.59% 90.01%
4 93.41% 92.09% 89.28% 92.98%
5 94.93% 92.07% 93.39% 86.08%
6 92.49% 91.05% 88.62% 90.52%
9 94.21% 89.10% 88.55% 88.12%
12 93.90% 88.24% 93.24% 78.81%
15 88.42% 86.43% 92.97% 85.59%
20 87.15% 85.04% 93.07% 84.27%
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Figure 6.3: Coprocessor performance in milliseconds

Therefore, when using the card as an accelerator, we consider only individual scalar
multiplications. With normal basis and digit-width 6, we get about 1ms for each multipli-
cation. Because we do not have direct comparison with a CPU implementation, we can use
only the hardware implementation to compare. We compare the time spent on the actual
scalar multiplication (clock cycles multiplied by 100MHz frequency) with total time. This
gives us a good insight into how much time was spent on PCI bus transfers and latencies.
The results are summed up in Table 6.6. We can see that no more than 15% of time is
spent on PCI bus and therefore the Combo6X card (or any PCI card in general) could be
used as an elliptic curve cryptography accelerator.

However, we do not consider this to be the best way to use ECC acceleration in PC.
Rather than transferring the point and curve between CPU and the accelerator, we could
use the fact that the Combo6X card is mainly a network card. This allows us to consider
an option of automated key exchange that would be performed only on network cards,
without increasing any load on CPU.
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7 Conclusions

The cryptographic coprocessor we have implemented offers a very easy way to choose
the desired key-length and the basis used to represent point coordinates. Two bases are
supported, normal and polynomial. Configuration of the bases is done by exchangeable
arithmetic units performing multiplication, squaring and division (inversion in normal ba-
sis).

Configuration of key-length is based on a set of irreducible polynomials for key-lengths 2
to 1000, used in polynomial basis. For normal basis we developed a mechanism that reads
the required multiplication matrix from external files.

Normal basis units we used supported variable digit-width for multiplication. We there-
fore designed polynomial units that offer the same functionality. However division is still
done in single bit steps.

The coprocessor uses programmable microcontroller to control its units. Even though the
microassembler we use has been developed specially for this purpose, it does offer a simple
mechanism that allows its further extension. It also offers macros that are expanded into
often used operations like multiplication. In this microassembler we programmed scalar
multiplication for both affine and projective coordinates.

We could not use a full verification process, because that requires a separate team working
solely on the verification. We tried to minimize the danger of making the same errors in
design and verification by first testing our verification libraries against test vectors from
previous work on this topic. The design was verified for digit-width 1 and all combinations
of bases and coordinates. We focused on statement and branch coverage as the main means
to determine the verification quality. However, before using the design for any commercial
development a full verification and review process should be performed.

We evaluated area and speed of multiple coprocessor variants. The maximal frequency
estimation proved to be unreliable and further measurements should be performed. The
area also deviates slightly from our expectations (mainly the number of flip-flops, which
we expected to be constant), but it is clear that area grows with increasing digit-width.
We concluded that the area of normal basis with digit-width 6 and polynomial basis with
digit-width 1 are about equal.

Performance testing with a wide range of digit-widths complemented verification of de-
sign and confirmed that the design gives correct results for digit-widths up to 20. We
noticed a significant difference between the two bases when computing scalar multiplica-
tion using affine coordinates. The normal unit starts as significantly slower than polynomial
unit, but then speeds up rapidly with growing digit-width. Digit-width has almost no effect
on polynomial unit in affine coordinates. This is due to a high number of divisions and
the algorithms used in each base. Both show almost identical performance in projective
coordinates, with polynomial unit being only marginally better than normal basis. From
digit-width 4, both units outperform the affine multiplication.

If we take into account the fact that normal unit with digit-width 6 is equal in size with
polynomial unit with digit-width 1 and compare performance of the two, the normal unit
outperforms the polynomial unit almost twice (55% clock cycles).

Measurements of time spent on each scalar multiplication prove that PCI bus latencies
do not hinder performance of our implementation platform, Combo6X. We can therefore
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use this, or a similar, card to accelerate computation of elliptic curve cryptography in PC.

This coprocessor could also be used to develop an automatic key exchange mechanism
on a network card, which would allow secure communication without any increase of CPU
load.
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A Register names

Number Name Function
0 X0 Not used
1 Y0 Not used
2 X1 Not used
3 Y1 Not used
4 X2 Not used
5 Y2 Not used
6 L Lambda in affine point addition
7 A Curve parameter A
8 T0 Temporary for projective addition and doubling
9 T1 Temporary for projective addition and doubling
10 T2 Temporary for projective addition and doubling
11 T3 Temporary for projective addition and doubling
12 T4 Temporary for projective addition and doubling
13 T5 Temporary for projective addition and doubling
14 ZERO Constant 0 in a given basis
15 K Scalar to multiply result with
16 QX Point to multiply, coordinate X
17 QY Point to multiply, coordinate Y
18 SX Intermediate and result of multiplication, coor-

dinate X
19 SY Intermediate and result of multiplication, coor-

dinate Y
20 SZ Intermediate, coordinate Z
21 CNT Counter, termintates multiplication, load with

00 . . . 1

22 ONE Constant 1 in a given basis
23 C Contains parameter C used in projective addi-

tion, no need to load
24 T6 Temporary for projective addition and doubling
25 T7 Temporary for projective addition and doubling
26 T8 Temporary for projective addition and doubling
27 T9 Temporary for projective addition and doubling
28 B Curve parameter B

The naming of registers can be changed in ECDSA.cmd file in uASM2 directory on DVD.
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B DVD Content

DVD
|-- Appendices - Electronic appendices
|-- results
| |-- performance - Results of performance measurements
| |-- reports - Results of digit-width comparison
| \-- reports_darch_180_6 - Results of polynomial unit comparisons
|-- src
| |-- Compiler
| | \-- uASM2 - Microassembler compiler
| \-- VHDL
| |-- compile - Script for synthesis to Combo6X card
| |-- hdl - Design source files
| | |-- normal - Normal unit
| | |-- pkgs - Libraries
| | |-- polynom - Polynomial unit
| | \-- units - Combo6X units, property of Liberouter
| |-- MCSs_ver - .mcs files loaded into Combo6X
| |-- nrm_data - Normal base multiplication matrices
| |-- programs - Programs used for performance testing
| |-- sim
| | |-- models - PLX model, property of Liberouter
| | |-- tbench - Testbenches
| | \-- tests - Random number generator library
| |-- tst_data - Data used for unit tests
| \-- uProg - Microprograms
\-- thesis
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