Performance Considerations When Using a Dedicated Ray
Traversal Engine

Lukas MarSalek
Saarland University and IVCI
Campus E1 1
DE, Saarbruecken
marsalek@cs.uni-saarland.de

Tomas Davidovi¢
Saarland University and DFKI
Campus E1 1
DE, Saarbruecken
davidovic@cs.uni-saarland.de

Philipp Slusallek
Saarland University and DFKI
Campus E1 1
DE, Saarbruecken
slusallek@cs.uni-saarland.de

ABSTRACT

In the recent years we have witnessed massive boost to hardware graphics accelerators (graphics cards), not only in the raw per-
formance, but also in their programmability, introducing the concept of GPGPU. However, despite this, the current architectures
still favor feed-forward algorithms over recursive ones. While shading is, in this sense, a feed-forward algorithm, ray tracing,
and specifically ray traversal, is a recursive rather than feed-forward algorithm. Adding a dedicated hardware ray traversal en-
gine should therefore prove to be an interesting option. Also, with dedicated hardware, we can perform many optimizations on
arithmetic units due to their fixed interaction. This can reduce the area well below a simple sum of areas of the individual units.
In this paper we offer for consideration analysis of memory requirements for combination of a dedicated hardware ray traversal
and intersection engine with highly parallel general purpose processor used for shading. We show results and requirements of

such a combination on scenes of moderate complexity, with regard to speed, bandwidth and latency.

Keywords:

1 INTRODUCTION

CPU ray tracing has received tremendous speed ups in
the past decade, with works on acceleration structures,
traversal algorithms, and packet (or frustum) traversal
[7, 17, 16, 12, 6]. While these advancements brought
ray tracing into the real-time area [9], the speed is still
generally not competitive to rasterization.

One of the chief problems causing this gap is the ded-
icated rasterization hardware, which is something ray
tracing lacks. The modern graphics processing units
(GPU) consist from a relatively small number of fixed
function raster engines (four in NVIDIA’s Fermi archi-
tecture) and a large number of general purpose pro-
cessing elements. Typically the general purpose part of
GPU prepares triangles (vertex and geometry shaders)
for raster engines, which dice triangles into a stream
of fragments that are fed back into the general purpose
part that performs fragment shading on them.

There are many papers [10, 6, 2] on GPU ray tracing,
as well as some deliverable products [8]. All such ap-
proaches use solely the general purpose part, and most
of them focus on overcoming limitations of their con-
temporary architectures. In [15] Seiler et al. present
ray tracing on Intel’s Larrabee, also utilizing only gen-
eral purpose elements of the chip.

ray tracing, hardware, GPU, bandwidth

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

The opposite approach, a stand-alone ray tracing
hardware, has also been explored [14, 18, 19, 13, 11].
While such solutions have potential to deliver the
best performance, the development in rasterization
hardware shows necessity of general purpose shading
capabilities.

Surprisingly little research has been done on the mid-
dle ground, replacing the GPU raster engines with an-
other kind of fragment generator. The only significant
work on this has been done by Caustic Graphics [3],
who proposed a separate ray tracing accelerator board,
that can utilize present GPU for shading.

A recent paper by Aila and Kerras [1] focuses on
bandwidth issues of complex scenes. The paper as-
sumes a separate ray tracing engine, but presents re-
sults for a whole NVIDIA Fermi GPU used as such
unit. However, it leaves open possibility of different
implementations, including dedicated hardware.

In this paper we present a solution, which proposes
to place a small dedicated hardware ray traversal en-
gine (RTE) either directly on the GPU die, or as a co-
processor on the graphics card.

2 RAY TRAVERSAL ENGINE

Our ray traversal engine (RTE) implementation is based
on the well-documented FPGA implementation of the
DRPU by Woop [18]. We will first give a brief overview
of the basic blocks used, then discuss frequency, area
scaling, and the connected design decisions.

2.1 Design blocks

The RTE (Figure 1) is a heavily pipelined unit with fine
grain multithreading. It uses B-KD trees [20] for its

acceleration structure. Our B-KD tree implementation
offers a two-level hierarchy, where each leaf of the top
tree can contain either a triangle or a transformation ma-
trix and pointer to a subtree.

The basic computation unit is a thread, which pro-
cesses four rays at once. Each pipeline stage can ac-
commodate a different thread, and there is no overhead
in switching threads. The whole RTE can process up to
64 threads (256 rays) at once. While there is no strict re-
quirement for coherence of rays within the same thread,
it can bring performance boost. Also, coherence be-
tween all processed rays improves cache hit rates.

Traversal
stack
32kB

Main
memory

Figure 1: RTE block diagram. The RTE core consists
of traversal and geometry units. Each unit is connected
to main memory via 32kB cache. Traversal unit has an
additional 32kB memory for traversal stack and con-
nection to the IO interface to return results and receive
new queries.

The IO unit strongly depends on the particular im-
plementation details of integrating RTE with the rest of
the system. We will therefore not elaborate on its im-
plementation, but we can imagine it as a kind of mem-
ory controller that handles ray and result queues in the
main memory, akin to what is assumed in [1]. The basic
functionality is to fetch rays for idle threads and store
results from finished ones.

The actual RTE core consists of two units: traversal
and geometry. Each is connected to the main memory
via a 4-way associative 32kB read-only cache. A sin-
gle larger cache has been considered, but there would
be either high contention for its single port, or it would
have to be two port cache, resulting in higher complex-
ity. Also, as each unit requires different data, there is no
redundancy in fetches from main memory that would
lower the efficiency.

Another two parts, not shown in the Figure 1 are
per-thread stack memory and ray state buffer. The per-
thread stack is accessed with up to 1 read and 1 write
each cycle, where the read occurs when a thread is sub-
mitted to traversal unit, and the write occurs when the

result of traversal stage is that both children should be
intersected. Each item in stack consists of a node ad-
dress (4B) and near and far values for each ray (32B),
for the total of 36 B per item. For convenience we con-
sider maximum scene depth of 32. Making the internal
stacks shorter and spilling overflow into main memory,
as described in [1], is also an option.

Ray state buffer is per-ray storage with current closest
hit distance, ID of the closest triangle and barycentric
coordinates.

For each thread, the traversal unit fetches the required
node. If the node is a leaf, it is sent to the geometry unit.
For inner nodes it intersects the child nodes and, based
on the result, it either pops a new node from stack, tra-
verses the single hit child, or traverses the closer child
and pushes the farther child onto the stack. If the stack
is empty it informs the IO unit that the ray has finished.

The geometry unit computes both the intersection
with triangles and the transformation of rays for travers-
ing the bottom tree when a two-level hierarchy is used.
This is possible because both operations require very
similar functional units with a minimal reconfiguration.
When this unit receives a leaf node, it first fetches three
vertices (for intersection) or matrix rows (for trans-
formation). The thread waits until all three memory
fetches are finished before further execution. Each ray
of the thread occupies 2 consecutive pipeline stages,
therefore it takes 8 cycles to process the whole thread.

The unit is, for some of the measurements, aug-
mented with a 1 MB 4-way associative L2 read-only
cache. This cache has latency of 100 cycles, and as-
sumes 512bit wide access to memory (fetches 64B at
once). When L2 cache is not present, the L1 caches are
connected directly to the memory and assume 128bit
wide access. The main memory is assumed to have la-
tency 600 cycles.

2.2 RTE synthesis

We first synthesized all the major arithmetic sections
of both units as well as the cache logic using propri-
etary IBM 90nm process [4]. All synthesized parts
were able to run at frequencies over 2GHz. This was
done without any special fusion of dependent arithmetic
units. Also, considering the already quite high latency
of both traversal (14 cycles) and geometry (36 cycles)
units, more stages could be added to further stabilize
the frequency, without a significant impact on the over-
all performance. While both optimizations can lead to
higher frequency than reported, we opted against their
implementation as the preliminary results are more than
satisfactory.

We have not explicitly synthesizes all the required
memories, instead we borrowed statistics from similar
memories from Cell/B.E.™ processor [5]. This proces-
sor has 32kB L1 cache, running at 3.2 GHz, as well as
1-read 1-write port local store memory running at the

same frequency. As these two types of memory fulfill
all requirements we have on our memory blocks, we
conclude that memory frequency will not be an issue.
The area of RTE is not of the prime concern for our
results, so we present only rough upper bound on RTE
area. We used a range of area estimation techniques to
confirm that RTE comfortably fits into the area of less
than 15mm?. Further reduction of size is possible by
aforementioned fusion of arithmetic units.

3 SIMULATOR ARCHITECTURE

We have performed two distinct simulations. The first
simulation was on the actual low-level VHDL code, that
is used as base for our synthesis results. While this con-
firms that the design is correct and the synthesized fre-
quencies valid, the simulation itself is very slow.

To solve this we also designed a cycle-accurate Sys-
temC model of RTE. SystemC is a C++ library that
allows using many high-level language constructs not
available in VHDL, while at the same time allowing to
simulate exactly the same timings, to the cycle levels.
We integrated this RTE model as a part of our ray trac-
ing framework, essentially replacing its standard traver-
sal and intersection routine.

Normally our framework uses the following work-
flow. First, a primary ray is generated from camera.
It is then intersected with the scene and the closest ge-
ometry is found. If there is any hit, integrator is in-
voked that, based on its type, queries material for its
BRDF, scene for the lights, performs shading and pos-
sibly shoots other rays. Once the primary ray is finished
and the final color is computed, another primary ray is
generated, until the whole image has been rendered.

While this sequential process works very well for
CPU rendering with low amount of parallelism (4-16
threads at once), it is ill-suited for massively parallel
hardware acceleration. We have therefore modified the
algorithm as follows. First, all primary rays are gener-
ated and put into input queue of the RTE. The RTE em-
ulation engine is then started, and after each cycle its
output queue is checked. If there is a ray in the output
queue, it is passed to the integrator that processes the
ray. This can, and generally does, generate other rays,
that are in turn fed back into the input queue. Where
there are no more rays in the input queue and no active
rays in the RTE, the frame has finished. Should generat-
ing all primary rays occupy too much memory at once,
it is also possible to split the image into several blocks
or batches, based on the memory configuration.

3.1 Shader models

Unfortunately, this system does not lend itself easily
to the standard recursive shaders, nor to any kind of
shader where the integrator needs result of a traced ray.
There are two possible solutions to the problem. First,

adopted by [3], is to employ tail recursion. Here the in-
tegrator generates all required rays in a fire-and-forget
manner, attaching to them all the necessary informa-
tion. Shadow rays would, for example, work in such a
way, that all lights are counted as contributing. Shadow
rays are then generated with a flag marking them as
shadow, maximum length and weight for the particu-
lar light. When they do not hit anything, no integrator
code is invoked and the light contribution stays added.
If they hit, the integrator simply accumulates the nega-
tive weight to the pixel, effectively subtracting the light
contribution. In this way, the original integrator does
not have to wait for shadow ray results, nor do we need
special no hit integrator to add light contribution when
shadow ray does not hit anything.

This approach has a drawback of spawning large and
poorly controllable number of rays. The other approach
is to use continuations. Here the integrator is effec-
tively split at each call for fraceRay and its state is
stored. Once the ray tracing has been finished, the state
is fetched from a global storage and the integrator con-
tinues. This can be easily implemented by a finite state
machine, but requires stack in the case ray bifurcation is
allowed. One of the advantages is that we do not need
to sum over all rays contributing to a single pixel, as
all the computations concerning one pixel are very self-
contained. Disadvantages include larger per-ray storage
and higher sensitivity to latency.

3.2 Acceleration structure partitioning

To increase cache coherence, Aila and Kerras [1] intro-
duce concept of partitioning the acceleration structure
into multiple treelets (subtrees), each of which fits into
the cache. As we consider this approach very relevant
for our results, we adapted it for B-KD-trees and in-
cluded it in our measurements.

The basic principle is that the whole structure is split
into many small subtrees, called treelets. Each of the
treelets has its own ray queue and when a ray crosses a
treelet boundary, its traversal is stopped and it is put
into corresponding treelet’s input queue. While the
original paper introduced several methods for schedul-
ing treelets to ray traversal engines, we use only the
simplest one called lazy scheduler. It simply takes
the treelet with largest queue and processes it until the
queue is empty. Then it switches to another treelet, with
the currently largest queue. The more complex methods
are meant to balance situation where there are multiple
ray traversal engines, which is something we do not cur-
rently consider for our scenario.

4 RESULTS

We tested on three scenes of moderate complexity, the
Conference (283k triangles), Fairy forest (174k tri-
angles), and Kitchen (253k triangles). We test both

Conference

Fairy forest

L

Kitchen

o : m‘iﬂ o | o il
Triangles: 282759 174117 253433
Res: 512 x 512 512 x 512 600 x 450
Continuations shaders
L2 off on off on off on
L1 hit rate [%] 68/53 69/55 55/44 56/45 83/77 89/85
L1 bandwidth [GBs™!] 6.7/4.7 15.7/11.0 5.0/3.4 11.7/7.9 11.2/7.6 16.7/11.3
L2 hit rate [%] - 95/84 - 88/73 - 90/80
L2 bandwidth [GBs™!] - 4.8/4.9 - 5.2/4.3 - 1.8/1.7
Ray bandwidth [GBs™!] 0.14 0.14 0.14 0.14 0.14 0.14
Mem bandwidth [GBs™!] 4.4 4.2 4.3 7.5 3.7 2.1
Latency [cycles] 6.0M 2M 12.0M 54M 33M 23M
Throughput [MRays/s] 47.8 112.4 20.8 48.1 66.6 100
Tail recursive shaders
L2 off on off on off on
L1 hit rate [%] 76/64 78/67 63/53 64/55 87/82 85/80
L1 bandwidth [GBs™!] 8.3/5.8 16.3/11.2 6.0/4.1 12.5/8.4 12.6/8.5 16.8/11.4
L2 hit rate [%] - 93/79 - 86/71 - 93/86
L2 bandwidth [GBs™!] - 3.6/3.7 - 4.5/3.8 - 2.6/2.3
Ray bandwidth [GBs™!] 0.14 0.14 0.14 0.14 0.14 0.14
Mem bandwidth [GBs™!] 4.4 4.1 4.1 6.2 33 2.1
Latency [cycles] 49M 2.6 M 10.0M 5.0M 3.0M 23M
Throughput [MRays/s] 61.1 117.4 25.0 52.3 75.4 99.2

Table 1: Results without treelets. We measure all three scenes with both tail recursive and continuation shaders
and both with and without 1 MB L2 cache. The reported results are L1 cache hit rate, required L1 bandwidth in
GBs~!, the same for L2 cache (if applicable), ray traffic bandwidth in GBs™!, total required memory bandwidth,
both from cache and rays, latency in cycles (Latency) and throughput in million rays per second. The L1 and L2

cache results are given in format vertices/nodes.

shader approaches, using 16 rays per pixel ambient oc-
clusion. We focus on the cache hit rates, throughput
(rays per second), ray latency (important for continu-
ation shaders), and the bandwidth requirements of our
unit, measured both with and without an L2 cache.

The reason why we provide not only cache hit rates,
but also their bandwidth is that one should not automat-
ically assume that higher hit rates are more desirable.
Should we devise the perfect ray tracing algorithm, that
only ever needs each node and triangle exactly once,
our caches would have hit rate 0%, but the cache band-
width would be significantly lower. Moreover, look-
ing at the bandwidth is still not sufficient, because the
most obvious way to lower bandwidth while keeping
the same hit rates is to reduce the overall throughput of
the engine, which is not at all desirable. We therefore
have to look at the ray throughput, cache hit rates and
bandwidth together and draw conclusions only from the
combination of the three, as we will see below.

At the beginning in Section 4.1 we provide results for
RTE without the use of treelets, follow up with Section
4.2 commenting results using treelets and close with
Section 4.3 on using BVH instead of B-KD-tree.

4.1 Standard implementation

Table 1, providing results for the standard RTE imple-
mentation, offers several insights. First and most im-
portant is, that the L2 cache helps in all the scenes, giv-
ing us speed up factor 1.3-2.3x. The reason for this is
somewhat obvious, the L2 cache provides large portion
of the scene with lower latency (100 cycles) than the
main memory (600 cycles). The L2 cache also exhibits
relatively high hit rate, above 85 % for nodes and over
70 % for vertices. It is important to note, that while the
L2 hit rate is higher for continuations shaders, this is
actually caused by the lower L1 cache hit rate, which
causes more requests to L2 cache, increasing the band-
width as noted at the beginning.

Conference

Kitchen

Fairy forest

L

o : m‘iﬂ o | o il
Triangles: 282759 174117 253433
Res: 512 x 512 512 x 512 600 x 450
Continuations shaders
L2 off on off on off on
L1 hit rate [%] 83/70 86/73 79/65 81/66 89/82 91/85
L1 bandwidth [GBs™!] 9.3/6.5 14.0/9.8 8.0/5.4 12.1/8.1 11.7/7.9 15.3/10.3
L2 hit rate [%] - 79/62 - 72/57 - 76/66
L2 bandwidth [GBs™!] - 2.0/2.7 - 2.3/2.8 - 1.4/1.6
Ray bandwidth [GBs™!] 1.3 1.3 2.2 2.2 14 14
Mem bandwidth [GBs™!] 5.5 7.1 5.8 9.5 4.2 4.8
Latency [cycles] 2.8M 22M 5.8M 4.6M 3.6M 3.1M
Queue switches [-] 104718 103067 196828 199421 130285 129507
Avg. queue size [-] 87 88 86 85 79 79
Throughput [MRays/s] 67.2 101.2 33.0 493 69.1 90.4
Tail recursive shaders
L2 off on off on off on
L1 hit rate [%] 96.2/92.3 97/93 95/89 96/89 97/95 98/95
L1 bandwidth [GBs™!] 14.0/9.8 15.4/10.7 | 13.9/9.3 15.5/10.3 15.0/10.2 16.1/10.9
L2 hit rate [%] - 73/61 - 70/64 - 70/62
L2 bandwidth [GBs™!] - 0.4/0.7 - 0.6/1.1 - 0.4/0.5
Ray bandwidth [GBs™!] 1.2 1.2 2.0 2.0 1.3 1.3
Mem bandwidth [GBs™!] 2.5 2.8 3.7 4.4 2.3 2.5
Latency [cycles] 15.8M 15.4M 30.0M 28.7TM 243 M 23.7TM
Queue switches [-] 13220 13176 19118 19252 15092 15255
Avg. queue size [-] 659 661 829 823 653 647
Throughput [MRays/s] 103.6 112.8 57.8 64.4 90.2 96.7

Table 2: Results with treelets. We again measure all three scenes with both tail recursive and continuation shaders
and both with and without IMB L2 cache. The reported results are L1 cache hit rate, required L1 bandwidth in
GBs~!, the same for L2 cache (if applicable), ray traffic bandwidth in GBs~!, total required memory bandwidth,
both from cache and rays, latency in cycles (Latency) and throughput in million rays per second. Two treelet
specific statistics are the number of queue switches and the average size of queue that has been scheduled for

processing.

The ray traffic bandwidth, created by reading and
writing rays from input and into output queues, is in all
the measurements an order of magnitude lower than the
total bandwidth to the main memory and thus relatively
insignificant. We can also see that with the total mem-
ory traffic between 2 and 6 GB s~! we are well beneath
the peak performance of current GPU memory systems.

Another very important thing is the ray latency (noted
in the table simply as Latency). This represents the av-
erage number of cycles between receiving a ray into the
input queue and writing the result into the output queue.
The latency goes from 2 million to 12 million cycles (1-
6ms at 2 GHz) for both tail recursive and continuation
shaders. This effectively prohibits any kind of active

or passive waiting on the shading side. By active wait-
ing we mean an actual spin loop that checks ray status.
By passive waiting we mean not scheduling the thread,
akin to when threads are waiting for global memory ac-
cess on NVIDIA GPUs. We would therefore keep a
work queue of rays to be processed and whenever trac-
ing a ray is required, we would store the whole shader
state, submit the ray query and fetch a different ray from
the work queue. Considering that with ray bifurcation
the shader state actually contains a ray stack, the whole
process becomes significantly more involved than the
tail recursive shaders.

Also, looking at the ray throughput, we can see that
the tail recursive shaders lead to almost universally bet-

ter results than continuation shaders, and never actually
perform significantly worse. The improvement always
corresponds to increase in L1 cache hit rate and band-
width, suggesting that the tail recursion gives us notice-
ably more coherent rays.

So far we have concluded that the overall best choice
would be using tail recursion with L2 cache, giving us
50-100 million rays per second. However, assuming
that the L2 cache is occupied roughly equally by both
nodes and vertices, it can hold up to 25 % of the whole
scene, for each of our scenes. The cache therefore ef-
fectively lowers demand on ray coherence, but consid-
ering larger scenes, this effect would become less pro-
nounced. We would therefore prefer to increase the co-
herence itself rather than mitigate the impact of inco-
herence.

4.2 Treelet implementation

Towards this goal we implemented the treelet approach
introduced by Aila and Kerras [1], as described in Sec-
tion 3.2. The results are summed up in Table 2.

We present the same statistics as in Table 1, but on
top of that provide two statistics that are specific to
the treelet mechanism. The first is the number of in-
put queue switches. It represents the how many times
was the RTE switched from working on one treelet
to another. Obviously, the lower the number the bet-
ter, as each switch effectively means cache invalida-
tion (whole different treelet is loaded). Corresponding
to that is the average queue size, measured when the
queue’s treelet was switched to active. It represents the
number of rays that are processed between the cache
invalidations. Here, the larger the number the better.

Looking at the L1 hit rate, bandwidth and the over-
all performance, we can conclude that the treelets do
provide overall improvement over the standard imple-
mentation. Because the rays are moved to and from
the RTE on each treelet boundary crossing we can see
an order of magnitude increase in ray traffic bandwidth.
This is offset by the fact that due to the increased coher-
ence between rays, the total bandwidth to the memory
(including the ray traffic bandwidth) is actually lower
than in the implementation without treelets.

We can see drop of about 10 % in the L2 hit rate,
combined with a significant drop in the L2 bandwidth.
This is also manifested by much closer ray throughput
between the versions with and without L2 cache.

The tail recursive shaders clearly and consistently
provide better results than continuation shaders, mainly
due to the fact that they have much more rays in flight
that can be sorted into treelet queues. As result, there
are about 10x less queue switches with queues being
on average 10x larger than when using continuations.

The only drawback is significant increase in ray la-
tency (to 15-30 million cycles, i.e. 7.5-15ms), which,
however, is not so important when tail recursion is used.

4.3 Using BVH

While using B-KD-tree treelets improved the situation
significantly for both Conference and Kitchen scenes,
the Fairy forest scene showed unsatisfactory results.
The treelets did indeed balance the performance be-
tween versions with and without L2 cache, but the ab-
solute performance was still only slightly above half of
what we could achieve in the other two scenes.

We suspected that the B-KD-tree might be poor fit for
the scene and modified our RTE to handle BVH instead.
We modified only the simulation engine itself, without
any considerations for the changes in area or frequency.

We implemented two different approaches to the
BVH. The first approach we call Node BVH, where
each node contains its own bounding box and only
indices to the children. The traversal then checks
whether ray hits a node, and if so always proceeds to
both children, determining the first one based on node
split plane and ray direction. The second approach we
call Child BVH, where each node contains bounding
boxes of both its children and we only descend to the
child the ray intersects.

While there is no principal difference between the ap-
proaches, two things have to be considered. First, the
Child BVH needs to perform 12 ray-plane intersections,
while the Node BVH needs to perform only 6. This es-
sentially means a factor of 2 in terms of area require-
ments for ray traversal unit. The other thing to con-
sider is treelet implementation. Should we choose to
use Node BVH, ray can descend to a child that resides
in another treelet only to discover it does not intersect
the child, thus generating two unnecessary treelet tran-
sitions.

L2 off on
B-KD-tree [MRays/s] | 57.7 64.4
Node BVH [MRays/s] | 50.0 54.9
Child BVH [MRays/s] | 65.0 73.5

Table 3: Acceleration structures. We show perfor-
mance in million rays per second on the Fairy forest
scene, using tail recursive shaders, treelets and three
different acceleration structures.

The Table 3 shows that the Node BVH drawback of
unnecessary treelet transitions outweighs any perfor-
mance gain by using BVH acceleration structure. The
Child BVH approach offers approximately 12 % speed
up, both with and without L2 cache, but further tests
showed that a similar speed up is achieved in the other
two scenes as well.

Given the fact that going from very light weight B-
KD-tree nodes to BVH nodes required for Child BVH
approach would introduce significant changes in the
whole design, we did not pursue this any further.

We conclude that the lower performance in Fairy for-
est is not due to the acceleration structure itself, but
rather due to the complex traversal paths of rays we

generated. This is also supported by the highest num-
ber of queue switches as well as the longest average ray
latency among the three scenes.

S CONCLUSION AND FUTURE
WORK

We introduced a hardware implementation of a ray
traversal engine (RTE), that could act as a fragment
generation unit in GPU, in lieu of current rasterization
engines. The RTE has been confirmed to run at frequen-
cies above 2 GHz and can fit into area less than 15 mm?,
and achieves performance of over 100 million rays per
second while keeping bandwidth to the main memory
below SGBs™!.

The unit was tested in two variants, with and without
1 MB L2 cache. While the L2 cache is beneficial for the
overall performance by mitigating impact of ray inco-
herence, we implemented a treelet approach to actually
reduce the incoherence.

We tested not only on our basic acceleration struc-
ture, B-KD-tree, but also on BVH with two versions
of traversal, showing that the B-KD-tree offers only
slightly lower performance than the significantly more
involved of the traversals and is actually superior to the
less involved one.

Two competing shader styles are compared, tail re-
cursive shaders and continuations shaders. The first is
found to be almost universally better, as even with 16
rays per pixel the memory consumption and bandwidth
are very reasonable, while at the same time it provides
a large pool of rays that nicely complements the treelet
approach.

In the future, analysis of combination and cooper-
ation of multiple such units would prove to be very
useful. While testing on significantly more complex
scenes proved to be challenge for our simulator imple-
mentation, the preliminary results show that feeding the
treelet queues with only one unit is not optimal.

In conclusion, we propose that using tail recursive
shading does match the feed forward scheme used in the
current GPUs rather well, and that hardware ray traver-
sal engine using tail recursive shaders with treelets
would be an interesting, useful, and not very demand-
ing addition to the current GPUs.

APPENDIX A

The ray life cycle when tail recursion with treelets is
used is the most complicated scheme we are using. We
will therefore describe it in more detail. Please refer to
Figure 2. The numbers mark data paths used in each
step and correspond to the step numbers below:

1. Shader stores ray into Root Queue, a queue associ-
ated with root treelet.

2. The input output (IO) unit picks the largest queue
for processing.

Vertex
cache

B Geometry
¥ processor
5¢ i |
=% Traversal
¥ processor

31 16

Node
cache

Traversal 4
stack

10 unit

GP shaders

Figure 2: RTE block diagram. We use this diagram
taken from the presentation to explain life cycle of ray
in the tail recursion with treelets configuration.

3. Rays from this queue are sent to traversal proces-
sor to traverse ray in the treelet. This is not a block
transfer, they are sent only when unit has free pro-
cessing capacity.

4. During the traversal we use per-ray stack.

5. When ray encounters a leaf, ray triangle test is per-
formed in Geometry processor.

6. When ray encounters a treelet boundary, ray goes
back to IO unit.

7. Ifray is completely finished, it is sent to shaders and
initiates new shader code.

8. Otherwise it is stored in queue corresponding to the
treelet it wants to traverse next.

9. When all rays from the processed queue are finished,
algorithm goes to step 2. When all queues are empty,
algorithm terminates.

REFERENCES

[1] Timo Aila and Tero Karras. Architecture con-
siderations for tracing incoherent rays. In Proc.
High-Performance Graphics 2010, 2010.

[2] Timo Aila and Samuli Laine. Understanding the
efficiency of ray traversal on gpus. In Proc.
High-Performance Graphics 2009, pages 145—
149, 2009.

[3] Caustic Graphics, Inc. CausticRT platform.
http://www.caustic.com/, 2009.

[4] Tomas Davidovic, Lukas Marsalek, Nicolas
Maeding, Markus Kaltenbach, Peter-Hans Roth,
and Philipp Slusallek. Ray Tracing Element for
cell/b.e. In Poster, High Performance Graphics
(HPG) 2009, New Orleans, August 2009.

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

Flachs et al. A Streaming Processing Unit for a
CELL Processor. In IEEE International Solid-
State Circuits Conference, pages 134—135, 2005.

Johannes Giinther, Stefan Popov, Hans-Peter Sei-
del, and Philipp Slusallek. Realtime ray tracing on
GPU with BVH-based packet traversal. In Pro-
ceedings of the IEEE/Eurographics Symposium
on Interactive Ray Tracing 2007, pages 113-118,
September 2007.

Vlastimil Havran. Heuristic Ray Shooting Algo-
rithms. Ph.d. thesis, Department of Computer Sci-
ence and Engineering, Faculty of Electrical En-
gineering, Czech Technical University in Prague,
November 2000.

Steven G. Parker, James Bigler, Andreas Dietrich,
Heiko Friedrich, Jared Hoberock, David Luebke,
David McAllister, Morgan McGuire, Keith Mor-
ley, Austin Robison, and Martin Stich. Optix: A
general purpose ray tracing engine. ACM Trans-
actions on Graphics, August 2010.

Daniel Pohl. Quake wars gets ray traced. Visual
Andrenaline, 0, 2009.

Stefan Popov, Johannes Giinther, Hans-Peter Sei-
del, and Philipp Slusallek. Stackless kd-tree
traversal for high performance gpu ray tracing.
Computer Graphics Forum, 26(3), September
2007. (Proceedings of Eurographics), to appear.

Karthik Ramani, Christiaan P. Gribble, and
Al Davis. Streamray: a stream filtering archi-
tecture for coherent ray tracing. In ASPLOS ’09:
Proceeding of the 14th international conference
on Architectural support for programming lan-
guages and operating systems, pages 325-336,
New York, NY, USA, 2009. ACM.

Alexander Reshetov, Alexei Soupikov, and Jim
Hurley. Multi-level ray tracing algorithm. In
SIGGRAPH '05: ACM SIGGRAPH 2005 Papers,
pages 1176-1185, New York, NY, USA, 2005.
ACM.

Jorg Schmittler. SaarCOR - A Hardware-
Architecture for Realtime Ray Tracing. PhD the-
sis, Saarland University, 2006.

Jorg Schmittler, Ingo Wald, and Philipp Slusallek.
SaarCOR — A Hardware Architecture for Ray
Tracing. In Proceedings of the ACM SIG-
GRAPH/Eurographics Conference on Graphics
Hardware, pages 27-36, 2002.

Larry Seiler, Doug Carmean, Eric Sprangle,
Tom Forsyth, Michael Abrash, Pradeep Dubey,
Stephen Junkins, Adam Lake, Jeremy Sugerman,
Robert Cavin, Roger Espasa, Ed Grochowski,
Toni Juan, and Pat Hanrahan. Larrabee: a many-
core x86 architecture for visual computing. In
ACM SIGGRAPH 2008 papers, SIGGRAPH ’08,

(16]

(17]

(18]

(19]

(20]

pages 18:1-18:15, New York, NY, USA, 2008.
ACM.

Ingo Wald. Realtime Ray Tracing and Interac-
tive Global Illumination. PhD thesis, Computer
Graphics Group, Saarland University, 2004.

Ingo Wald, Carsten Benthin, Markus Wagner, and
Philipp Slusallek. Interactive rendering with co-
herent ray tracing. In Alan Chalmers and Theresa-
Marie Rhyne, editors, Computer Graphics Forum
(Proceedings of EUROGRAPHICS 2001), vol-
ume 20, pages 153-164. Blackwell Publishers,
Oxford, 2001. available at http://graphics.cs.uni-
sb.de/ wald/Publications.

Sven Woop. DRPU: A Programmable Hardware
Architecture for Real-time Ray Tracing of Coher-
ent Dynamic Scenes. PhD thesis, Saarland Uni-
versity, 2006.

Sven Woop, Erik Brunvand, and Philipp Slusallek.
Estimating Performance of a Ray-Tracing ASIC
Design. In Proceedings of IEEE Symposium
on Interactive Ray Tracing 2006, pages 7-14,
September 2006.

Sven Woop, Gerd Marmitt, and Philipp Slusallek.
B-KD Trees for Hardware Accelerated Ray Trac-
ing of Dynamic Scenes. In Proceedings of Graph-
ics Hardware, pages 67-77, 2006.

